
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 12
Linked Lists - What is happening?
What is it? Inserting at the head, traversing it,
inserting at the tail

LA
ST

 T
IM

E.
..

Technical disaster galore

Green screens of death

Malloc and free

TO
D

A
Y

..
.

Linked Lists - what is it?

Linked list - insert at the head

Linked list - traversal

Linked list - insert at the tail

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T3/LIVE/WEEK07/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

A LINKED
LIST IS
MADE UP OF
NODES

WHAT IS A NODE?

Each node has some data and a pointer to the next

node (of the same data type), creating a linked

structure that forms the list

Let me propose a node structure like this:

struct node {
 int data;
 struct node *next;
};

int data

node

struct
node
*next;

some data of type int

a pointer to the next node,
which also has some data
and a pointer to the node
after that... etc

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

We can create a linked list, by having many nodes

together, with each struct node next pointer giving us

the address of the node that follows it

But how do I know where the linked list starts?

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

What about a pointer to the first node?

How do I know when my list is finished?

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A pointer to the
first node (not a
node itself, but has
the memory address
of where the first
node is!

A pointer
to the
first node

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

Pointing to a NULL at the end!

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A pointer
to the
first node

NULL

For example, a list with: 1, 3, 5A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

1

node

0xA44

node node

head = 0xFF0
NULL

0xFF0 0xA44 0x3B4

0x666

3

0x3B4

5

NULL

A LINKED
LIST

WHY?

Linked lists are dynamically sized, that means we can

grow and shrink them as needed - efficient for

memory!

Elements of a linked list (called nodes) do NOT need to

be stored contiguously in memory, like an array.

We can add or remove nodes as needed anywhere in

the list, without worrying about size (unless we run

out of memory of course!)

We can change the order in a linked list, by just

changing where the next pointer is pointing to!

Unlike arrays, linked lists are not random access data

structures! You can only access items sequentially,

starting from the beginning of the list.

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

In order to create a linked list, we would need to

Define struct for a node,

A pointer to keep track of where the start of the

list is and

A way to create a node and then connect it into

our list...

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

Let's say we wanted to create a linked list with 5, 3, 1

Let's create the first node to start the list!

A pointer to keep track of where the start of the

list is and by default the first node of the list

It will point to NULL as there are no other nodes

in this list.

1

NULL

head = 0xFF0

0xFF00x666

NULL

node

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

Create the next node to store 3 into (you need

memory)

Assign 3 to data

and insert it at the beginning so the head would now

point to it and the new node would point to the old

head

3

0xFF0

head = 0xA44

0xFF0

0x666

NULL

node

1

NULL

0xA44

node

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

Create the next node to store 5 into (you need

memory)

Assign 5 to data

and insert it at the beginning so the head would now

point to it and the new node would point to the old

head

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

node

1

NULL

0xA44

node

0xFF0

node

0xB62

5

BR
EA

K
 T

IM
E.

..

You have five boxes in a row numbered 1 to 5, in one of

which, a cat is hiding. Every night he jumps to an adjacent

box, and every morning you have one chance to open a box

to find him. How do you win this game of hide and seek -

what is your strategy? What if there are n boxes?

A LINKED
LIST

PUTTING IT ALL
TOGETHER IN CODE

Define our struct for a node

 A pointer to keep track of where the start of the list

is:

The pointer would be of type struct node, because

it is pointing to the first node

The first node of the list is often called the 'head'

of the list (last element is often called the 'tail')

A way to create a node and then connect it into our

list...

Create a node by first creating some space for

that node (malloc)

Initialise the data component on the node

Initialise where the node is pointing to

1.

2.

3.

4. Make sure last node is pointing to NULL

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

For example a list with 1, 3, 5

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

How do you think we can move through the list to

start a the head and then move to each subsequent

node until we get to the end of the list...

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Set your head pointer to the current pointer to keep track

of where you are currently located....

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

struct node *current = head

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

current = current->next

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

When should I be stopping?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

while (current != NULL)

current

SO
TRAVERSING
A LINKED
LIST...

The only way we can make our way through the linked

list is like a scavenger hunt, we have to follow the

links from node to node (sequentially! we can't skip

nodes)

We have to know where to start, so we need to know

the head of the list

When we reach the NULL pointer, it means we have

come to the end of the list.

SO NOW,
LET'S PRINT
EACH NODE
OUT...

void print_list(struct node *head){
 struct node *current = head;
 while (current != NULL){
 printf("%d\n", current->data);
 current = current->next;
 }
}

INSERTING
ANYWHERE
IN A LINKED
LIST...

Where can I insert in a linked list?

At the head (what we just did!)

Between any two nodes that exist (next lecture!)

After the tail as the last node (now!)

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

INSERTING
ANYWHERE
IN A LINKED
LIST...

Where can I insert in a linked list?

At the head (what we just did!)

Between any two nodes that exist (next lecture!)

After the tail as the last node (now!)

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Set your head pointer to the current pointer to keep track

of where you are currently located....

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

struct node *current = head

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

current = current->next

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

When should I be stopping?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

while (current != NULL)

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

When should I be stopping? If you stop at current = NULL

that means you won't know what the address of the

previous node is!

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

while (current != NULL)

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

So let's stop at the last node...

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

while (current->next != NULL)

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now we want to create a new node to insert:

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

struct node new_node = malloc(sizeof(struct
node))

current0xF50

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Assign values to new node:

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

new_node->data = 13;

current0xF50

13

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Because this will be the last node point it to NULL

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

new_node->next = NULL;

current0xF50

13

NULL

NULL

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now point our current last node to the new node

3

0xFF0

head = 0xB62

0xFF0

0x666

NULL

5

0xF50

0xA44

0xFF0

0xB62

1

current->next = new_node;

current0xF50

13

NULL

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/al2ocecwm19g

Traverse a list

linked_list.c

LINKED LIST

Insert at the tail

linked_list.c

LINKED LIST

WHAT DID WE LEARN TODAY?

What is it?

linked_list.c

LINKED LIST

Insert at the head

linked_list.c

LINKED LIST

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

