
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 7
An array of arrays, 2D

LA
ST

 W
EE

K
..

.
IN WEEK 3...

Talked about the importance of style

- work neatly as you go!

Discovered functions (separate

chunks of code for reuse, help to

segment the problem)

Got introduced to arrays -

homogenous collections - stores the

same type of variable in a collection

TH
IS

 L
EC

TU
RE

..
.

TODAY...

Recap basic arrays

Recap basic strings

String library functions

Array of arrays

Array of structs

A taste of pointers... (maybe if we

have time!)

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T3/LIVE/WEEK04/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

Assignment 1 will be released after this

lecture

CS Frogger - welcome to my misspent

childhood playing frogger

Aims of the assignment

Apply arrays and two-dimensional arrays

in solving problems

Apply good style to your code

Apply the use of functions in code

Practice skills in debugging code, and

skills in patience as you search for one

missing semi-colon

ASSIGNMENT 1
RELEASED TODAY

The Assignment has 4 stages, each stage

ramps up with difficulty (just like the lab

exercises)

Suggest going through the stages

chronologically - do not skip stages

Live Stream to go through the assignment in

more detail:

Friday 12:30pm

Link for the livestream:

ASSIGNMENT 1
LIVESTREAM

are a collection all of the same type

are declared by using a type, name and a

size of the array

you can easily access individual elements of

an array by using an index

Indexing starts at 0 and moves through until

(size - 1) of the array

go hand in hand with while loops that make

it easy to work through an array

Remember that arrays:RECAP OF
ARRAYS

RECAP OF
ARRAYS

So let's say we have this declared and initialised:

This is what it looks like visually:

0 1 2 3 4 5 6

int int int int int int int

this array holds 7 integers
Note that indexing starts at 0

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 1 3 5

RECAP OF
ARRAYS

2 3

int int

If I wanted the third element of the array
The index would be 2, so to access it:

ice_cream_consum[2]

1

You can access any element of the array by

referencing its index

Note, that indexes start from 0

Trying to access an index that does not exist, will

result in an error

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 3 5

RECAP OF
ARRAYS

AN EXAMPLE
PROBLEM

Problem: A user is asked to enter 10 numbers. We will

then go through these numbers and find the lowest

number and output what the lowest number is to the

user.

lowest_number.c

RECAP OF
STRINGS

WHAT ARE THEY?

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed

NULL

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

Some other useful functions for strings:SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

YOU CAN
HAVE AN
ARRAY OF
ANYTHING

AN ARRAY OF
STRUCTS

The struct for a coordinate point:

An array of structs declared:

An array of structs visually:

2 30 1 4

struct struct

struct coordinate map[5];

3

struct coordinate {
 int x;
 int y;
};

struct structstruct

1

map[0].x = 3;
map[0].y = 1;

col 2

2

2

ACCESSING
AN ELEMENT
INSIDE ARRAY
OF ARRAYS

An array of arrays is basically a grid. To declare an

array of arrays:

To access an element now you will need to:

col 3col 1 col 4

int array[3][5];

13 2 1 2

13 1 2

13 1 2

row 0

row 1

row 2
col

col 0

type array_name[num of rows][num of columns];

array[2][3];

ARRAY OF
ARRAYS

Think of the problem last week where we tracked ice-

cream consumption for a week. What if I want to do

this for a month (a week at a time)?

col

int ice_cream[4][7];

col 2 col 3col 1 col 4

row 0

row 1

row 2

col 0 col 5 col 6

row 3

REMEMBER A
WHILE LOOP
INSIDE A
WHILE LOOP
TO PRINT A
GRID?

col

int row = 0;
while (row <= SIZE){
 int col = 0;
 while (col <= SIZE){
 printf("%d", col);
 col++;
 }
printf("\n");
row++;
}

Do you remember when we printed out a grid of

numbers in Week 2 (Friday night vibes)?

How can we transfer this knowledge to print out an

array of arrays?

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

BR
EA

K
 T

IM
E

TIME TO STRETCH
There are five bags of gold that all look identical, and each has ten

gold pieces in it. One of the five bags has fake gold in it. The real gold,

fake gold, and all five bags are identical in every way, except the

pieces of fake gold each weigh 1.1 grams, and the real gold pieces

each weigh 1 gram. You have a perfectly accurate digital gram scale

and can use it only once. How do you determine which bag has the

fake gold?

LET'S
WELCOME
POINTERS
INTO THE MIX

A pointer is another variable that stores a memory

address of a variable

This is very powerful, as it means you can modify

things at the source (this also has certain

implications for functions which we will look at in a

bit)

To declare a pointer, you specify what type the

pointer points to with an asterisk:

For example, if your pointer points to an int:

int *pointer;

type_pointing_to *name_of_ variable;

WHY DO WE
NEED
POINTERS?

Pointers solve two common problems:

Remember how I said that when we pass some

inputs into a function it actually makes a copy of

that variable? Well, pointers kind of allow us to

share information easier between sections of

code without all that copying

Pointers also allow us to play with more complex

data structures such as linked lists - coming in

Week 7 and will really help with pointers :)

Declare a pointer with
a * - this is where you
will specify what type
the pointer points to

1. 2. Initialise a pointer - assign the
address to the variable with &

3. Dereference a pointer -Using a * , go to the address that this
pointer variable is assigned and find what is at that address

THERE ARE
THREE PARTS
TO A POINTER

VISUALLY
WHAT IS
HAPPENING? // Declare a variable of

// type int. called box
// Assign the value 6 to
// box
int box = 6;

// Declare a pointer
// variable that points to
// an int and assign the
// address of box to it
int *box_ptr = &box;

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

box = 6;

printf("The value of the
variable box is located at
address %p is %d\n", box_ptr,
*box_ptr);

VISUALLY
WHAT IS
HAPPENING?

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

box = 6;

YOU CAN
HAVE A
POINTER TO
DIFFERENT
VARIABLES

WHEN YOU DECLARE A
POINTER, YOU WILL
SPECIFY THE TYPE
THAT IT POINTS TO
FOLLOWED BY *

// Declare a variable of type int called box
// Assign the value 6 to box
int box = 6;

// Declare a pointer variable that points to
// an int and assign the address of box to it
int *box_ptr = &box;

// Declare a variable of type double called box
// Assign the value 3.2 to box
double box = 3.2;

// Declare a pointer variable that points to
// a double and assign the address of box to it
double *box_ptr = &box;

// Declare a variable of type char called box
// Assign the value 'c' to box
char box = 'c';

// Declare a pointer variable that points to
// a double and assign the address of box to it
char *box_ptr = &box;

INITIALISING
POINTERS
WHEN YOU
DON'T HAVE
ANYTHING TO
INITIALISE
THEM WIHT
YET

NULL POINTER

Pointers are just another type of variable, and just

like our other variables it should be initialised after it

is declared.

Generally, we will initialise a pointer, by pointing it at

a variable

If we need to initialise a pointer that is not yet

pointing to anything, we use:

This is a special word in a C library which is #define

It is basically a value of 0, but for a pointer, we use

this keyword NULL

NULL

WHAT HAPPENS
IF YOU FORGET
TO EVER GIVE
THIS NULL
POINTER AN
ACTUAL
ADDRESS WITH
SOMETHING AND
THEN TRY AND
DEREFERENCE A
NULL POINTER?
COMPILES THAN CHAOS...

TIME TO
CODE AND
SEE A
POINTER IN
ACTION!
pointers_intro.c

Best way to learn about pointers is to start using

them

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/alkfepqss1ze

LIVESTREAM on

Friday 12:30pm:

ASSIGNMENT 1
IS RELEASED

lowest_number.c

RECAP 1D
ARRAYS

print_2Darray.c

AN ARRAY OR
ARRAYS (2D)

hello_pointer.c

TASTE OF
POINTERS

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

