COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 7

An array of arrays, 2D

LAST WEEK...

IN WEEK 3...

e Talked about the importance of style
- work neatly as you go!

e Discovered functions (separate
chunks of code for reuse, help to
segment the problem)

e Got introduced to arrays @ -
homogenous collections - stores the

same type of variable in a collection

TODAY...

e Recap basic arrays

e Recap basic strings
e String library functions
e Array of arrays

e Array of structs

THIS LECTURE...

e A taste of pointers.. (maybe if we

have time!)

WHERE IS THE CODE?

o0l Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T3/LIVE/WEEKQ4/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

ASSIGNMENT 1 e Assignment 1 will be released after this

lecture
RELEASED TODAY e CS Frogger - welcome to my misspent
childhood playing frogger
e Aims of the assignment
o Apply arrays and two-dimensional arrays
in solving problems

o Apply good style to your code

o Apply the use of functions in code
o Practice skills in debugging code, and
skills in patience as you search for one

missing semi-colon

ASSIGNMENT 1 e The Assignment has 4 stages, each stage

ramps up with difficulty (just like the lab
LIVESTREAM exercises)
e Suggest going through the stages
chronologically - do not skip stages
e [ive Stream to go through the assignment in
more detail:
o Friday 12:30pm

o Link for the livestream:

RE CAP OF Remember that arrays:
ARRAYS e are a collection all of the same type

e are declared by using a type, name and a
size of the array

e yYOU can easily access individual elements of
an array by using an index

e [ndexing starts at 0 and moves through until
(size - 1) of the array

e go hand in hand with while loops that make
it easy to work through an array

RECAP OF e 50 let's say we have this declared and initialised:
ARRAYS int ice_cream consum[7] = {3, 2, 1, 2, 1, 3, 5};

e This is what it looks like visually:
Nt int Nt Nt Nt Nt Nt
0 1 2 3 4 5 6

this array holds 7 integers
Note that indexing starts at 0

RECAP OF
ARRAYS

e You can access any element of the array by
referencing its index

e Note, that indexes start from O

e Trying to access an index that does not exist, will

result in an error

int ice cream consum[7] = {3,
Nt int int Nt int Nt int
T T
0 1 2 5 6

If I wanted the third element of the array
The index would be 2, so to access it:

ice_cream_consum|2]

RECAP OF Problem: A user is asked to enter 10 numbers. We will
ARRAYS then go through these numbers and find the lowest

number and output what the lowest number is to the

user.

AN EXAMPLE
PROBLEM lowest_ number.c

RE CAP OF e Strings are a collection of characters that are joined

together

ST RI NGS o an array of characters!

e There is one very special thing about strings in C - it is

an array of characters that finishes with a
WHAT ARE THEY? o This symbol is called a null terminating character

e |t is always located at the end of an array, therefore

an array has to always be able to accomodate this
character

e |t is not displayed as part of the string

e |t is a placeholder to indicate that this array of
characters is a string

e |t is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

e Because strings are an array of characters, the array
type is char.

e To declare and initialise a string, you can use two
methods:

//the more convenient way

char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','1l','1"','0',"'\O0"'};

char char char char char char

T 1T

h

HELPFUL
LIBRARY
FUNCTIONS
FOR

STRINGS

FGETS()

There is a useful function for reading strings:
fgets(array[], length, stream)
The function needs three inputs:

e array|| - the array that the string will be stored into

e length - the number of characters that will be read in

e stream - this is where this string is coming from - you
don’t have to worry about this one, in your case, it will
always be stdin (the input will always be from

terminal)
// Declare an array where you will place the

string that you read from somewhere

char array[MAX LENGTH];

// Read in the string into array of length
MAX LENGTH from terminal input
fgets(array, MAX LENGTH, sdin)

How Do I Using the NULL keyword, you can continuously get string

input from terminal until Ctrl+D is pressed
KE E P o fgets() stops reading when either length-1 characters

READI NG are read, newline character is read or an end of file is

reached, whichever comes first

STUFF IN

1 #include <stdio.h>
)

OVE R AN D 3 #define MAX_LENGTH 15
4

5 int main(void) {

6 // Declare an array where you will place the string
char array[MAX_LENGTH];

printf("Type in a string to echo: ");

? 1 // Read in the string into the array until Ctrl+D ts
® 16 // pressed, which 1s indicated by the NULL keyword

while (fgets(array, MAX_LENGTH, stdin) != NULL) {

© O 00

1 printf("The string is: \n");

14 printf("%ss", array);

15 printf("Type in a string to echo: ");
16 }

17 return 0;

18 }

SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

okA{q0
" e L

[LTl
CILF W <

Some other useful functions for strings:
e strlen()gives us the length of the string (excluding
the '\O’
e strepy()copy the contents of one string to another
e strcat()attach one string to the end of another

(concatenate)
e stremp()compare two strings
e strchr () find the first or last occurance of a

character

1 #include <stdio.h>
2 #include <string.h>

3
U s I N G 4 #define MAX_LENGTH 15
5

6 int main(void) {

7 // Declare an array

8 char word_array[MAX_LENGTH];
9

10 // Example using strcpy to copy from one string
11 // to another (destination, source)

12 strcpy(word_array, "Jax");

13 printf("%ss\n", word_array);
FUNCTIONS [

15 // Example using strlen to find string length

16 // returns the int length NOT including '\O'

17 int length = strlen("Sasha");\n

18 printf(“"The size of string 'Sasha' is %d chars\n", length);

19

20 // Example using strcmp to compare two strings character
ST RI NGS 21 // by character - function will return:

22 // 0 = two strings are equal

25 // other int i1f not the same

24

25 int compare_string = strcmp("Jax", "Juno");

26 printf(“"The two strings are the same: %d\n", compare_string);

27

28 compare_string = strcmp(word_array, "Jax");

29 printf(“"The two strings are the same: %d\n", compare_string);

30 return 0;

YOU CAN
HAVE AN
ARRAY OF
ANYTHING

AN ARRAY OF
STRUCTS

The struct for a coordinate point:

struct coordinate {
int x;
int y;
;i
An array of structs declared:

struct coordinate map[5];

An array of structs visually:

struct struct struct struct struct
3
|
0 1 2 3 4

map[0].x
map[O0].y

ACCESSING An array of arrays is basically a grid. To declare an
array of arrays:

AN ELEMENT type array name[num of rows][num of columns];

INSIDE ARRAY [.

OF ARRAYS To access an element now you will need to:

array[2][31];

col O col 1 col 2 col 3 col 4

row O

row 1

row 2

ARRAY OF
ARRAYS

Think of the problem last week where we tracked ice-

this for a month (a week at a time)?

int ice _cream[4][7];

row O

row

row 2

row 3

col O

col 1 col 2 col 3 col 4 col 5

cream consumption for a week. What if | want to do

col 6

REMEMBER A Do you remember when we printed out a grid of
WHILE LOOP numbers in Week 2 (Friday night vibes)?
INSIDE A

int row = 0;
while (row <= SIZE){

WHILE LOOP int col = 0;
TO PRINT A

while (col <= SIZE){
printf("'%d", col);

GRID? _—

printf('"\n'");

YOw++,

¥

How can we transfer this knowledge to print out an

array of arrays?

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND

THE SUN:

OUTSIDE WHILE
ROW =0

INSIDE WHILE
COL=0

int array[3][4];

int row = 0;

while (row <= 3){
int col = 0;
while (col <= 4){

printf("%d", array[row][col]);
col++;
+
printf("'\n");
YOw++ col 0 col 1 col 2 col 3

RN
‘EEEE

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
ROW =0
INSIDE WHILE
COL =1

int array[3][4];

int row = 0;

while (row <= 3){
int col = 0;
while (col <= 4){

printf("%d", array[row][col]);
col++;
¥
printf('"'\n"");

col O col 1 col 2 col 3

YOW++;

RN
‘EEEE

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
ROW =0
INSIDE WHILE
COL =2

int array[3][4];

int row = 0;

while (row <= 3){
int col = 0;
while (col <= 4){

printf("%d", array[row][col]);
col++;
¥
printf('"'\n");

col O col 1 col 2 col 3

YOW++;
} row O “ “ X “

RN
‘EEEE

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND

THE SUN:

OUTSIDE WHILE
ROW =0

INSIDE WHILE
COL=3

int array[3][4];
int row = 0;
while (row <= 3){

int col = 0;

while (col <= 4){

printf ("
col++;
H
printf('"'\n"");
Yow++;
} row O
row
row 2

", array[row][col]);

col O col 1 col 2 col 3

HEE

X

HEN

HEEE

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN

AROUND THE SUN:

OUTSIDE WHILE
ROW =1

INSIDE WHILE
COL=0

int array[3][4];
int row = 0;
while (row <= 3){

int col = 0;
while (col <= 4){
printf('"%d", array[row][col]);
col++;
¥
printf("'\n");
YOw++ col 0 col 1 col 2 col 3

A

RN
‘EEEE

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN

AROUND THE SUN:

OUTSIDE WHILE
ROW =1

INSIDE WHILE
COL =1

int array[3][4];
int row = 0;
while (row <= 3){
int col = 0;
while (col <= 4){
printf ("

printf ("
Yow++;

col++;

")

row O

row

row 2

", array[row][col]);

col O col 1 col 2 col 3

HEEE

_MHL
HEEE

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN

AROUND THE SUN:

OUTSIDE WHILE
ROW =1

INSIDE WHILE
COL =2

int array[3][4];
int row = 0;
while (row <= 3){
int col = 0;
while (col <= 4){
printf ("

printf ("
Yow++;

col++;

")

row O

row

row 2

", array[row][col]);

col O col 1 col 2 col 3

HEEE

_LIL
HEEE

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN

AROUND THE SUN:

OUTSIDE WHILE
ROW =1

INSIDE WHILE
COL=3

int array[3][4];
int row = 0;
while (row <= 3){
int col = 0;
while (col <= 4){
printf ("

printf ("
Yow++;

col++;

")

row O

row

row 2

", array[row][col]);

col O col 1 col 2 col 3

HEEE

_Llﬁu
HEEE

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND

THE SUN:

OUTSIDE WHILE
ROW = 2

INSIDE WHILE
COL=0

int array[3][4];
int row = 0;
while (row <= 3){

int col = 0;
while (col <= 4){
printf('"'%d", array[row][col]);
col++;
¥
printf("'\n");
YOw++ col 0 col 1 col 2 col 3

A

NN
‘EEEE

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
ROW = 2
INSIDE WHILE
COL =1

int array[3][4];
int row = 0;
while (row <= 3){

int col = 0;
while (col <= 4){
printf('"%d", array[row][col]);
col++;
¥
printf("'\n");
YOw++ col 0 col 1 col 2 col 3

A

RN
‘EEEE

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
ROW = 2
INSIDE WHILE
COL =2

int array[3][4];
int row = 0;
while (row <= 3){

int col = 0;
while (col <= 4){
printf('"'%d", array[row][col]);
col++;
¥
printf("'\n");
YOw++ col 0 col 1 col 2 col 3

A

NN
I

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND

THE SUN:

OUTSIDE WHILE
ROW = 2

INSIDE WHILE
COL=3

int array[3][4];
int row = 0;
while (row <= 3){

int col = 0;
while (col <= 4){
printf('"'%d", array[row][col]);
col++;
¥
printf("'\n");
YOw++ col 0 col 1 col 2 col 3

A

NN
T

BREAK TIME

The

e are five bags of go

golo

pieces in it. One of t

TIME TO STRETCH

d that all look identical, and eac

ne five bags has fake gold in it.

N has ten

'he real gold,

fake gold, and all five bags are identical in every way, except the

pieces of fake gold each weigh 1.1 grams, and the real gold pieces

each weigh 1 gram. You have a perfectly accurate digital gram scale

and can use it only once. How do you determine which bag has the
fake gold?

LET'S e A pointer is another variable that stores a memory

address of a variable
WELCOME e This is very powerful, as it means you can modify
POI NTE Rs things at the source (this also has certain
INTO TH E MIX implications for functions which we will look at in a
bit)
e To declare a pointer, you specify what type the

pointer points to with an asterisk:
type pointing to *name_of variable;

o For example, if your pointer points to an int:

int *pointer;

WHY Do WE e Pointers solve two common problems:

N E E D o Remember how | said that when we pass some
inputs into a function it actually makes a copy of
POI NTE RS? that variable? Well, pointers kind of allow us to
share information easier between sections of

code without all that copying

o Pointers also allow us to play with more complex
data structures such as linked lists - coming in

Week 7 and will really help with pointers :)

1. Declare a pointer with 2. Initialise a pointer - assign the
T H E RE ARE a * - this is where you address to the variable with &
will specify what type

T H RE E PARTS th(? pointer points to

1 // A taster of pointers
2 // Sasha Week 4, 22T3

TO A POINTER

#include <stdio.h>

5

6 1Rt main(void) {

7 // Declare a variable of fype int, called box

8 // Assign value 6 to box

9 box = 6;

10

11 eclare a pointer riable that points to an int
12 // BAssign the acdress of box to it

13 int *box_ptr = &box;

14

15 printf("The value of the vartiable 'box| at!"

16 "address %p i1s %d\n", box_ptr, *b@x_ptr);
17

18 return 0;

19 }

3. Dereference a pointer -Using a =, go to the address that this
pointer variable is assigned and find what is at that address

VISUALLY
WHAT IS
HAPPENING?

Memory Stack

// Declare a variable of

// type int. called box OxFFAC
// Assign the value 6 to
// box

OxFF48&

int box = 6;

// Declare a pointer

// variable that points to OxFF44

// an int and assign the

// address of box to it
int *box_ptr = &box; OXFF40

VISUALLY
WHAT IS
HAPPENING?

Memory Stack

printf("The value of the OXxFFAC
variable box is located at
address %p is %d\n'", box ptr,

*box ptr); OxFF4&

OxFF44

OxFF40

YOU CAN
HAVE A
POINTER TO
DIFFERENT
VARIABLES

WHEN YOU DECLARE A
POINTER, YOU WILL
SPECIFY THE TYPE
THAT IT POINTS TO
FOLLOWED BY

// Declare a variable of type int called box
// Assign the value 6 to box
int box = 6;

// Declare a pointer variable that points to
// an int and assign the address of box to it
&box;

int *box ptr

// Declare a variable of type double called box
// Assign the value 3.2 to box
double box = 3.2;

// Declare a pointer variable that points to
// a double and assign the address of box to it
&box;

double *box ptr

// Declare a variable of type char called box
// Assign the value 'c¢' to box
char box = '¢';

// Declare a pointer variable that points to
// a double and assign the address of box to it
char *box ptr = &box;

INITIALISING
POINTERS
WHEN YOU
DON'T HAVE
ANYTHING TO

INITIALISE
THEM WIRT
YET

NULL POINTER

e Pointers are just another type of variable, and just

like our other variables it should be initialised after it

Is declared.
e Generally, we will initialise a pointer, by pointing it at
a variable
e [f we need to initialise a pointer that is not yet
pointing to anything, we use: NULL
e This is a special word in a C library which is #define
e |t is basically a value of O, but for a pointer, we use
this keyword NULL

1// A taster of pointers
‘!‘I ‘I‘. 5}
4 // Sasha Week 4, 22T3
5
IF YOU FORGET
2

8 int main(void) {

9
To EVE R GIVE 10 // Declare a pointer variable that points to an int

11 // Assign NULL to i1t as it i1s not yet pointing to anything

THIS NULL LTS
13

14 // Try to access the address of NULL, which is really

POI NTE R AN 15 // NOTHING and a black hole of nothing CRASH! BURN!
16 printf("The value of the variable 'box' at!"

17 "address %p is %d\n", box_ptr, *box_ptr);
ACTUAL :

19 return 0;

20 }

1~/ TestCode/Weekb4% dcc -o pointers intro pointers intro.c
i~/ TestCode/Week04% ./pointers intro
pointers intro.c:13:16: runtime error -

SOME I H I NG AN D dcc explanation: You are using a pointer which is NULL

A common error is accessing *p when p == NULL.

TH E N TR I AN D Execution stopped in main() in at

//Declare a pointer variable that points to an int.
//Assign NULL to it as it is not yet pointing to anything

DEREFERENCE A
//Try to access the address of NULL.... CRASH
INNI\lli' IllIlI I ‘!::"I IP\I I IEE Iltlil
Values when execution stopped:

printf("The value of the variable 'box' located at address %p 1is %d\n"
COMPILES THAN CHAOS... box ptr — NULL

return 0:

}

TIME TO o Bhest way to learn about pointers is to start using
CODE AND -

SEE A

POINTER IN

ACTION!

pointers intro.c

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://www.menti.com/alkfepqssize

WHAT DID WE LEARN TODAY?

ASSIGNMENT 1 RECAP 1D AN ARRAY OR TASTE OF
IS RELEASED ARRAYS ARRAYS (2D) POINTERS
LIVESTREAM on lowest_number.c print_2Darray.c hello_pointer.c

Friday 12:30pm:

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

