
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 6
I ❤️ ARRAYS

LA
ST

 L
EC

TU
RE

..
.

ON TUESDAY...

Talked about good style/bad style

Functions - what/how/why?

TH
IS

 L
EC

TU
RE

..
.

TODAY...

Looking back at some functions

Starting to look at arrays

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T3/LIVE/WEEK03/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

A function is a block of statements that

performs a specific task
FUNCTIONS
RECAP

WHAT?

Improve readability of the code

Improve reusability of the code

Debugging is easier (you can narrow down

which function is causing issues)

Reduces size of code (you can reuse the

functions as needed, wherever needed)

FUNCTIONS
RECAP

WHY?

Predefined standard library functions (built-

in)

printf(), scanf() inside stdio.h

User defined function with syntax:

FUNCTIONS
RECAP

HOW? return_type function_name (arguments (type name)) {
 BLOCK OF CODE (Set of instructions for the
 function)
}

return_type - can be any data type such as int,

double, char, etc (CAN'T BE ARRAY)

function_name - whatever your heart desires,

should be descriptive

arguments - what are the inputs into the function

Block of Code - set of instructions exercuted when

call is made to the function

RECAP
FUNCTIONS

int add (int number_one, int number_two) {
 int sum;
 sum = number_one + number_two;
 return sum;
}

return type:
What type
does this

 function return?

 A function,
which adds two

numbers
together and
returns the

result To finish I return an int (sum),
which is what I said I would

return when I wrote my
function

name of
function:

What will I name
my function?

input/
arguments:

What am I giving
my function?

RECAP
FUNCTIONS

PROTOTYPE

You must have a prototype above your main to let

everyone know the function is defined and is

coming!

REVISITING
MEMORY

Our C file is stored on the hard drive

Our Compiler compiles the code into another file that

the computer can read

When we execute code, the CPU will actually process

the instructions and perform basic arithmetic, but the

RAM will keep track of all the data needed in those

instructions and operations, such as our variables.

Reading and writing to variables will change the

numbers in RAM

Memory is divided into the stack and the heap

The stack is an ordered stack and the heap is a random

free for all - insert something where you can find

space for it.

heap

stack

global/static
variable

code

REVISITING
MEMORY

Stack memory is where relevant information about

your program goes:

which functions are called,

what variables you created,

Once your block of code finishes running {}, the

function calls and variables will be removed from

the stack (it's alive!)

It means at compile time we can allocate stack

memory space (not at run time)

The stack is controlled by the program NOT BY THE

developer

The heap is controlled by the developer (more on

this in a few weeks) and can be changed at run time

heap

stack

global/static
variable

code

MEMORY IS
IMPORTANT
WITHOUT MEMORY,
WE CAN'T REALLY
RUN ANYTHING

Think of your own memory and what it allows

you to do.

Computer memory is important to consider when

you are writing your code (we don't focus on this

in 1511, but you will in later courses)

The more you waste memory, the slower your

program gets... you will learn all about this in

later computing courses! In 1511 we don't mind

the wastage :)

HOW DO
WE
EFFICIENTLY
SOLVE
PROBLEMS?
DIFFERENT
PROBLEMS HAVE
DIFFERENT
OPTIMUM
SOLUTIONS

In this course we will learn about two pretty cool

data structures:

Arrays (NOW!)

Linked Lists (after flexibility week)

There are of course other data structures that

you will learn about in further computing courses

Choosing the right structure to house our data

depends on what the problem is and what you

are trying to achieve. Some structures lend

themselves better to certain types of problems.

SO
WITHOUT
FURTHER
ADO

THE ARRAY

A PRETTY IMPORTANT DATA TYPE!

A collection of variables all of the same type

Think about how this is very different to a

struct

We want to be able to deal with this collection as

a whole entity, where we can:

Access any variable in this collection easily

Change any variable in this collection easily

SO WHAT
KINDS OF
PROBLEMS
DO ARRAYS
SOLVE?

NOTICE THAT EACH OF
THESE COLLECTIONS
HAS THE SAME TYPE OF
VARIABLE I AM
RECORDING

Let's say I want to record the daily ice cream

consumption for a week

What about the daily temperatures for a year?

The amount of time daily that I spend walking my

dogs?

Can you think of other examples?

ARRAY
(VISUALLY)

NOTE: ALL ELEMENTS
OF AN ARRAY MUST BE
OF THE SAME DATA
TYPE (HOMOGENOUS)

If we group our data type as a collection, for

example a collection of integers:

We can access them as a group(collection)

We can loop through and access each individual

element of that collection

0 1 2 3 4 5 6

int int int int int int int

this array holds 7 integers
You can access elements of an array by

referring to their index

WHY DO WE
NEED AN
ARRAY?

LET'S LOOK AT AN
EXAMPLE PROBLEM

Let's say I am tracking my ice cream

consumption over a week (without arrays)

int mon = 2;
int tues = 3;
int wedn = 3;
int thur = 5;
int fri = 7;
int sat = 1;
int sun = 3;
// Any day with 3 or more scoops is too
much!
if (mon >= 3){
 printf("Too much ice cream\n");
}
if (tue >= 3) {.......

WHY DO WE
NEED AN
ARRAY?

LET'S LOOK AT AN
EXAMPLE PROBLEM

What if I am tracking this over the month or over

a year?

Will I need 30 variables/365 variables?

THIS IS A
GREAT
PLACE TO
USE AN
ARRAY...

HOW DO WE DECLARE
AN ARRAY

// 1. Declaring an array
int ice_cream_consum[7];

// 2. Declaring and Initialise the array
// Note that once you declare an array,
// you can't initialise it in this way
int ice_cream_consum[7] = {3, 2, 1, ...};

Type of data
stored in array

Name of the
array

Number of items
in the array

To initialise, open curly bracket and separate values
by comma. If you have empty {}, it means to intialise

the whole array to 0

ARRAY
(VISUALLY)

DECLARING AND
INITIALISING AN
ARRAY

So let's say we have this declared and initialised:

This is what it looks like visually:

0 1 2 3 4 5 6

int int int int int int int

this array holds 7 integers
Note that indexing starts at 0

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 1 3 5

2 3

int int

If I wanted the third element of the array
The index would be 2, so to access it:

ice_cream_consum[2]

1

ARRAY
(VISUALLY)

ACCESSING ARRAY
ELEMENTS

You can access any element of the array by

referencing its index

Note, that indexes start from 0

Trying to access an index that does not exist, will

result in an error

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 3 5

USING
ARRAYS

CLOSER LOOK

You can't printf() a whole array, but you can print

individual elements (consider how you could go

through the array to print out every element...)

You can't scanf() a whole array, i.e. a line of user

input test into an array, but you can can scanf()

individual elements (think how to do every element

in an array...)

2 3

int int

Start at index 0 (first entry into while loop)
ice_cream_consum[0]

print what is inside index 0

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

2 3

int int

 increase index by 1
ice_cream_consum[1]

print what is inside index 1

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

2 3

int int

 increase index by 1
ice_cream_consum[2]

print what is inside index 2

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

2 3

int int

 increase index by 1
ice_cream_consum[3]

print what is inside index 3

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

2 3

int int

 increase index by 1
ice_cream_consum[4]

print what is inside index 4

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

2 3

int int

 increase index by 1
ice_cream_consum[5]

print what is inside index 5

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

2 3

int int

 increase index by 1
ice_cream_consum[6]

print what is inside index 6

1

USING
ARRAYS

CLOSER LOOK

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7){
 printf("%d ", ice cream_consum[i]);
 i++;
}

3 2 1 2 3 5

PROBLEM
SOLVING
TIME

HOORAY!

I meet my friend for ice cream every day for a

week (I don't drink coffee)... We want to be able to

track how many ice creams in total we all

consumed in a week, and also who ate the most

ice cream in that week!

ice_cream.c

BR
EA

K
 T

IM
E

TIME TO STRETCH
You have two eggs in a 100-story building. You want to find out what

floor the egg will break on, using the least number of drops.

STRINGS

WHAT ARE THEY?

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed

NULL

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

Some other useful functions for strings:SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/albc87vpdxy2

WHAT DID WE LEARN TODAY?

functions_recap.c

FUNCTIONS
RECAP

numbers.c

ice_cream.c

EXPLORING
ARRAYS

strings.c

STRINGS
(ARRAYS OF

CHAR)

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

