
Generalized Proof Number Search
Abdallah Saffidine

abdallah.saffidine@dauphine.fr
Tristan Cazenave

cazenave@lamsade.dauphine.fr

LAMSADE
Université Paris-Dauphine

75775 Paris Cédex 16 – FRANCE

Résumé :
Nous présentons Generalized Proof Number Search
(GPNS) un algorithme fondé sur les Proof Numbers, per-
mettant d’obtenir la valeur de positions dans des jeux à
multiples résultats. GPNS est une généralisation directe
de Proof Number Search (PNS) : dans le cas des jeux à
deux résultats les deux algorithmes se comportent exacte-
ment de la même manière. Cependant, GPNS permet de
traiter directement une classe plus étendue de jeux. Lors-
qu’un jeu à plus de deux résultats, on peut utiliser PNS
à plusieurs reprises avec différents objectifs pour obtenir
finalement la valeur d’une position. À l’inverse, un seul
appel à GPNS est suffisant pour obtenir la même infor-
mation. Nous présentons des résultats expérimentaux sur
la résolution du Puissance 4 et de Woodpush, pour divers
tailles de plateaux. Ces résultats montrent le nombre de
descentes à effectuer pour résoudre une position donnée,
est bien moindre pour GPNS que pour PNS.

Mots-clés : Proof Number Search, jeu de strategie, réso-
lution

Abstract:
We present Generalized Proof Number Search (GPNS), a
Proof Number based algorithm able to prove position in
games with multiple outcomes. GPNS is a direct genera-
lization of Proof Number Search (PNS) in the sense that
both behave exactly the same way in games with two out-
comes. However, GPNS targets a wider class of games.
When a game features more than two outcomes, PNS can
be used multiple times with different objectives to finally
deduce the value of a position. On the contrary, GPNS
is called only once to produce the same information. We
present experimental results on solving various sizes of
the games Connect Four and Woodpush showing that the
total number of tree descents of GPNS is much lower than
the cumulative number of tree descents of PNS.

Keywords: Proof Number Search, strategy game, solving

1 Introduction

Proof Number Search (PNS) [3] is a best first
search algorithm that enables to dynamically fo-
cus the search on the parts of the search tree that
are easier to solve. PNS solves games with two
outcomes, either a win or a loss. It can solve
games with more than two outcomes using a
dichotomic search and thresholds on the out-
comes. It has been successfully used for solving
difficult games such as Fanorona that has been
proven a draw [11].

1.1 Motivation

In this paper we propose a new PNS algorithm
that enables to solve games with multiple out-
comes. The principle guiding our algorithm is
to use the same tree for all possible outcomes.
When using a dichotomic PNS, the search trees
are independent of each other and the same
subtrees are expanded again. We avoid this re-
expansion sharing the common nodes. Moreo-
ver we can safely prune some nodes using consi-
derations on bounds as in [4].

1.2 Previous work

There has been a lot of developments of the
original PNS algorithm [3]. An important pro-
blem related to PNS is memory consumption
as the tree has to be kept in memory. In order
to alleviate this problem, V. Allis proposed PN2

[2]. It consists in using a secondary PNS at the
leaves of the principal PNS. It allows to have
much more information than the original PNS
for equivalent memory, but costs more compu-
tation time. The other improvements of PNS are
depth first algorithms that behave similarly to
PNS. PN* [15] is the first depth first iterative
deepening version of PNS that uses thresholds
at AND nodes and a transposition table. It was
extended to deal with disproof numbers with
PDS [8] and later with df-pn [9].

PNS algorithms have been successfully used
in many games and especially as a solver for
games such as Checkers [13, 14], Shogi [16] and
Go [5].

Conspiracy numbers search [6, 12] also deals
with a range of possible evaluations at the
leaves of the search tree. However, the algo-
rithm works with a heuristic evaluation function
whereas GPNS has no evaluation function and
only scores solved positions. Moreover the de-
velopment of the tree is not the same for GPNS
and for Conspiracy numbers search since GPNS
tries to prove the outcome that costs the less ef-
fort whereas Conspiracy numbers search tries to



eliminate unlikely values of the evaluation func-
tion.

The Iterative PNS algorithm [7] also deals with
multiple outcomes but uses the usual proof and
disproof numbers as well as a value for each
node and a cache.

1.3 Outline of the paper

The next section gives some definitions that will
be used in the remainder of the paper. The third
section details PNS. The fourth section explains
GPNS. The fifth section gives experimental re-
sults for the games Connect Four and Wood-
push.

2 Definitions

We consider a two player game. The players are
named Max and Min. O = {o1, . . . , om} denotes
the possible outcomes of the game. We assume
that the outcomes are linearly ordered with the
following preference relation for Max : o1 <Max
· · · <Max om, we further assume that the game
is zero-sum and derive a preference relation for
Min : om <Min · · · <Min o1. In the following, we
will always stand in the point of view from Max
and use oi < oj (resp. oi ≤ oj) as a shorthand
for oi <Max oj (resp. ¬oi <Min oj).

We assume the game is finite, acyclic, sequen-
tial and deterministic. Each position n is either
terminal or internal and some player is to move.
When a position n is internal and player p is to
play, we call children of n (noted chil(n)) the
positions that can be reached by a move of p.
Using backward induction, we can therefore as-
sociate to each position n a so-called minimax
value, noted real(n) ∈ O.

Solving a position consists in obtaining its mi-
nimax value. It is possible to compute directly
the minimax values of a given position by buil-
ding the whole subsequent game tree and using
straightforwardly the definition of minimax va-
lues. This naïve procedure, however, is resource
intensive and more practical methods can be
sought. Indeed, not every part of the subsequent
game tree is needed to compute the minimax va-
lue of a node. For instance, if we know that Max
is to play in a position n and one child has the
best value possible, then real(n) does not de-
pend on the value of the other children and they
need not be calculated.

As the current game tree is not necessarily com-
pletely expanded, the following classification of
nodes arises. An internal node is called develo-
ped if its children have been added to the current
game tree. Nodes that are not developed are cal-
led frontier nodes.

We call effort numbers heuristic numbers which
try to quantify the amount of information nee-
ded to prove some fact about the minimax value
of a position. The higher the number, the lar-
ger the missing piece of information needed to
prove the result. When an effort number reaches
0, then the corresponding fact has been proved
to be true, while if it reaches∞ then the corres-
ponding fact has been proved to be false.

3 Proof Number Search

Proof Number Search (PNS) is an algorithm that
can solve positions without exploring the whole
game tree. It is essentially designed for games
with two outcomes O = {Lose,Win}. In the
context of PNS, proving that the minimax va-
lue of a node is Win is called proving the node,
while proving that it is Lose is called disproving
the node.

3.1 Determination of the effort

PNS is a best first search algorithm which tries
to minimize the effort needed to solve the root
position. Two effort numbers are associated to
each node in the tree, the proof number (PN)
represents an estimation of the remaining ef-
fort needed to prove the node, while the dis-
proof number (DN) represents an estimation
of the remaining effort needed to disprove the
node. When a node n has been proved, we have
PN(n) = 0 and DN(n) = ∞, when n has been
disproved, PN(n) =∞ and DN(n) = 0.

The effort needed to solve a node in the tree
is determined in different ways depending on
its type. They are summarized in Figure 1. The
Win and Lose rows designate terminal nodes,
in which case the node is already solved. The
Frontier row designates an internal frontier node
that has not been expanded yet, for which the
proof and disproof numbers are initially set to
1, although more elaborate initializations exist
(see section 4.6). The Max (resp. Min) row desi-
gnates developed nodes where Max (resp. Min)
is to play. For such nodes, the numbers are de-
duced from the effort numbers of the children
nodes.



Node type PN DN

Win 0 ∞
Lose ∞ 0
Frontier 1 1
Max minc∈chil(n) PN(c)

∑
c∈chil(n) DN(c)

Min
∑

c∈chil(n) PN(c) minc∈chil(n) DN(c)

FIGURE 1 – Determination of effort numbers for
PNS

3.2 Descent and expansion of the tree

If the root node is not solved, then more infor-
mation needs to be added to the tree. Therefore
an internal frontier node needs to be expanded.
To select it, the tree is recursively descended se-
lecting at each Max node the child minimizing
the proof number and at each Min node the child
minimizing the disproof number.

Once the node to be expanded, n, is reached,
each of its children are added to the tree. Thus
the status of n changes from a frontier node to a
developed node and PN(n) and DN(n) have to
be updated. This update may in turn lead to an
update of the proof and disproof numbers of its
ancestors.

After the proof and disproof numbers in the tree
are updated to be consistent with formulae from
Figure 1, another most frontier node can be ex-
panded. The process continues iteratively with a
descent of the tree, its expansion and the conse-
cutive update until the root node is solved.

3.3 Multi-outcome games

Many interesting games have more than two
outcomes, for instance Chess, Draughts and
Connect Four have three outcomes : O =
{Win,Draw,Lose}. We describe the game of
Woodpush in the fifth section. A game of Wood-
push of size S has 2 × S × (S + 1) possible
outcomes. For many games, it is not only inter-
esting to know who is the winner but also what
is the exact score of the game.

If there are more than two possible outcomes,
the minimax value of the starting position can
still be found with PNS by using a dichoto-
mic search [3]. This dichotomic search is ac-
tually using PNS on transformed games. The
transformed games have exactly the same rules
and game tree as the original one but have bi-
nary outcomes. If there are m different out-

comes, then the dichotomic search will make
about lg(m) calls to PNS.

If the minimax value is already known, e.g.,
from expert knowledge, but needs to be proved,
then two calls to PNS are necessary and suffi-
cient.

4 Generalized Proof Number
Search

Generalized Proof Number Search (GPNS)
aims at applying the ideas from PNS to multi-
outcome games. However, contrary to dichoto-
mic PNS and iterative PNS, GPNS dynamically
adapts the search depending on the outcomes
and searches the same tree for all the possible
outcomes.

GPNS shares many similarities with PNS. A
game tree is kept in memory and it is exten-
ded through cycles of descent, expansion and
updates. GPNS also makes use of effort num-
bers.

In PNS, two effort numbers are associated with
every node, whereas in GPNS, if there are m
outcomes, then 2m effort numbers are associa-
ted with every node. In PNS, only completely
solved subtrees can be pruned, while pruning
plays a more important role in GPNS and can
be compared to alpha-beta pruning.

4.1 Effort Numbers

GPNS also uses the concept of effort numbers
but different numbers are used here in order to
account for the multiple outcomes. Let n be a
node in the game tree, and o ∈ O an outcome.
The greater number, G(n, o), is an estimation
of the number of node expansions required to
prove that the value of n is greater than or equal
to o (from the point of view of Max), while
conversely the smaller number, S(n, o), is an es-
timation of the number of node expansions re-
quired to prove that the value of n is smaller
than or equal to o. If G(n, o) = S(n, o) = 0
then n is solved and its value is o : real(n) = o.

Figure 2 features an example of effort numbers
for a three outcomes game. The effort numbers
show that in the position under consideration
Max can force a draw and it seems unlikely that
at that point the Max can force a win. 1

1. S(n,Win) 6= 0 means that it was not assumed that the game is
finite and it has not been proved yet that Min can force the game to end.



Outcome G S

Win 500 3
Draw 0 10
Lose 0 ∞

FIGURE 2 – Example of effort numbers for a 3
outcome game

Node type G(n, o) S(n, o)

Frontier 1 1
Max minc∈chil(n) G(c, o)

∑
c∈chil(n) S(c, o)

Min
∑

c∈chil(n) G(c, o) minc∈chil(n) S(c, o)

(a) Internal node

Outcome G S

om ∞ 0
. . . ∞ 0
real(n) 0 0
. . . 0 ∞
o1 0 ∞

(b) Terminal node

FIGURE 3 – Determination of effort numbers for
GPNS

4.2 Determination of the effort

The effort numbers of internal nodes are obtai-
ned in a very similar fashion to PNS, G is ana-
logous to PN and S is analogous to DN. Every
effort number of a frontier node is initialized at
1, while the effort numbers of a developed node
are calculated with the sum and min formulae as
shown in Figure 3a.

If n is a terminal node and its value is real(n),
then the effort numbers are associated as shown
in Figure 3b. We have for all o ≤ real(n),
G(n, o) = 0 and for all o ≥ real(n), S(n, o) =
0.

4.3 Properties

G(n, o) = 0 (resp. S(n, o) = 0) means that the
value of n has been proved to be greater than
(resp. smaller) or equal to o, i.e., Max (resp.
Min) can force the outcome to be at least o (resp.
at most o). Conversely G(n, o) =∞ means that
it is impossible to prove that the value of n is
greater than or equal to o, i.e., Max cannot force
the outcome to be greater than or equal to o.

As can be observed in Figure 2, the effort num-
bers are monotonic in the outcomes. If oi ≤

oj then G(n, oi) ≤ G(n, oj) and S(n, oi) ≥
S(n, oj). Intuitively, this property states that the
better an outcome is, the harder it will be to ob-
tain it or to obtain better.

0 and ∞ are permanent values since when an
effort number reached 0 or ∞, its value will
not change as the tree grows and more informa-
tion is available. Several properties link the per-
manent values of a given node. The proofs are
straightforward recursions from the leaves and
are omitted for lack of space. Care must only be
taken that the initialization of internal frontier
nodes satisfies the property which is the case for
all the initializations discussed here.

Proposition 1. If G(n, o) = 0 then for all o′ <
o, S(n, o′) =∞ and similarly if S(n, o) = 0 then
for all o′ > o, G(n, o′) =∞.

Proposition 2. If G(n, o) =∞ then S(n, o) = 0
and similarly if S(n, o) =∞ then G(n, o) = 0.

4.4 Descent policy

We call attracting outcome of a node n,
the outcome o∗(n) that has not been pro-
ved to be achievable by the player on turn
and minimizing the sum of the correspon-
ding effort numbers. We have for Max nodes
o∗(n) = argmino,G(n,o)>0(G(n, o) + S(n, o)).
Similarly, we have for Min nodes o∗(n) =
argmino,S(n,o)>0(G(n, o)+S(n, o)). As a conse-
quence of the existence of a minimax value for
each position, for all node n, there always exists
at least one outcome o, such that G(n, o) 6=
∞ and S(n, o) 6= ∞. Hence, G(n, o∗(n)) +
S(n, o∗(n)) 6=∞.

We call distracting outcome of a Max (resp.
Min) node n the outcome just below (resp.
above) its attracting outcome, we note it o′(n).
When the attracting outcome of a Max (resp.
Min) node is the worst (resp. best) outcome
in the game, we set the best opponent try to
be equal to the most likely outcome. That is,
if n is a Max node with o∗(n) = ok, then
o′(n) = omax(k−1,1) and if n is a Min node, then
o′(n) = omin(k+1,m). As the name indicates, the
distracting outcome of a node is the one towards
which it would be simplest for the opponent to
deviate if he or she wanted to disprove the at-
tracting outcome.

Consider Figure 2, if these effort numbers were
associated to a Max node, then the attracting



outcome would be Win and the distracting out-
come would be Draw, while if they were as-
sociated to a Min node then the attracting out-
come would be Draw and the distracting out-
come would be Win.

From now on, unless we specify otherwise, we
will only consider the attracting and distracting
outcomes of the root node r of the tree and note
o∗ = o∗(r), o′ = o′(r). We assume Max is at
turn in the root node. We can now define the root
descent policy that specify how the frontier node
to be expanded is selected (see Algorithm 1).
We first estimate which outcome is attracting at
the root node, then we try to prove this value at
Max nodes and to disprove it at Min nodes.

Algorithm 1 Root descent policy
argument root Max node r
compute o∗ and o′
n← root.
while n is not a frontier node do

if n is a Max node then
n← argminc∈chil(n) G(c, o∗)

else
n← argminc∈chil(n) S(c, o

′)
end if

end while
return n

Proposition 3. For finite two outcome games,
GPNS and PNS develop the same tree.

Démonstration. If we know the game is finite,
the Max is sure to obtain at least the worst out-
come so we can initialize the greater number for
the worst outcome to 0, we can also initialize
the smaller number for the best outcome to 0. If
there are two outcomes only, O = {Lose,Win},
then we have the following relation between ef-
fort numbers in PNS and GPNS : G(n,Win) =
PN(n), S(n,Lose) = DN(n). If the game is fi-
nite with two outcomes, then the attracting out-
come of the root is Win and the distracting out-
come is Lose. Hence, GPNS and PNS behave in
the same manner.

4.5 Pruning

We define the pessimistic and optimistic bounds
for a node n as pess(n) = argmaxo(G(n, o) =
0) and opti(n) = argmino(S(n, o) = 0). The
following inequality gives their name to the
bounds pess(n) ≤ real(n) ≤ opti(n), pess(n)
(resp. opti(n)) is the worst value possible (resp.

the best value possible) for n consistent with the
current information in the tree. For any node n,
n is solved as soon as pess(n) = opti(n). Al-
though the definition is different, these bounds
coincide with those described in Score Bounded
Monte-Carlo Tree Search [4].

We also define relevancy bounds that are similar
to alpha and beta bounds in the classic Alpha-
Beta algorithm [10]. For a node n, the lower
relevancy bound is noted α(n) and the upper
relevancy bound is noted β(n). These bounds
are calculated using the optimistic and pessi-
mistic bounds as follows. If n is the root of the
tree, then α(n) = pess(n) and β(n) = opti(n).
Otherwise, we use the relevancy bounds of the
father node of n : if n ∈ chil(f), we set
α(n) = maxMax(α(f), pess(n)) and β(n) =
minMax(β(f), opti(n)).

The relevancy bounds of a node n take their
name from the fact that if real(n) ≤ α(n) or
if real(n) ≥ β(n), then having more informa-
tion about real(n) will not contribute to solving
the root of the tree. Therefore they enable safe
pruning

Proposition 4. For each node n, if we have
β(n) ≤ α(n) then the the subtree of n need not
be explored any further.

Subtrees starting at a pruned node can be com-
pletely removed from the main memory as they
will not be used anymore in the proof. This im-
provement is crucial as lack of memory is one
of the main bottleneck of PNS and GPNS.

Compatibility of pruning and the root descent policy.
We now show that pruning does not interfere
with the root descent policy in the sense that it
will not affect the number descents performed
before the root is solved. For this purpose we
prove that the root descent policy does not lead
to a node which can be pruned.

Proposition 5. If r is not solved, then for all
nodes n traversed by the root descent policy,
α(n) < o∗ ≤ β(n).

Démonstration. We first prove the inequality
for the root node. If the root position r is not sol-
ved, then by definition of the attractive outcome,
o∗ > pess(r) = α(r). Using Proposition 1, we
know that all outcomes better than the optimis-
tic bound cannot be achieved : ∀o > opti(r) =
β(r), G(o, r) =∞. Since G(r, o∗) + S(r, o∗) 6=
∞, then α(r) < o∗ ≤ β(r).



For the induction step, suppose n is a Max
node that satisfies the inequality. We need to
show that c = argminc∈chil(n)G(c, o∗) also sa-
tisfies the inequality. Recall that the pessimistic
bounds of n and c satisfy the following order :
pess(c) ≤ pess(n) and obtain the first part of
the inequality α(c) = α(n) < o∗. From the in-
duction hypothesis, o∗ ≤ β(n) ≤ opti(n), so
from Proposition 1 G(n, o∗) 6= ∞, moreover,
the selection process ensures that G(c, o∗) =
G(n, o∗) 6= ∞ , therefore G(c, o∗) 6= ∞ which
using Proposition 2 leads to o∗ ≤ opti(c). Thus,
o∗ ≤ β(c). The induction step when n is a
Min node is similar and is omitted for lack of
space.

4.6 Applicability of improvements of PNS
to GPNS

Many improvements of PNS are directly appli-
cable to GPNS. For instance, the current-node
enhancement presented in [2] takes advantage
of the fact that many consecutive descents occur
in the same subtree. This optimization allow to
obtain a notable speed-up and can be straight-
forwardly applied to GPNS.

It is possible to initialize internal frontier nodes
in a more elaborate way than presented in Figure
3a. Most initializations available to PNS can be
used with GPNS, for instance the mobility ini-
tialization [17] in a Max node n consists in set-
ting the initial smaller number to the number of
legal moves : G(n, o) = 1, S(n, o) = | chil(n)|.
In a Min node, we would have G(n, o) =
| chil(n)|, S(n, o) = 1.

A generalization of PN2 is also straightforward.
If n is a new internal frontier node and d des-
cents have been performed in the main tree,
then we run a nested GPNS independent from
the main search starting with n as root. After
at most d descents are performed, the nested
search is stopped and the effort numbers of the
root are used as initialization numbers for n in
the main search. We can safely propagate the in-
terest bounds to the nested search to obtain even
more pruning.

5 Experimental results

In this section we detail the application of GPNS
to the games of Connect Four and Woodpush.

PNS GPNS
Size ≤ Draw ≥ Draw Sum

3× 4 1618 673 2291 813
3× 5 4799 4903 9702 2498
4× 3 11427 10888 22315 2919
3× 6 21746 15759 37505 8714
4× 4 79601 33393 112994 22691
3× 7 150172 95159 245331 28571
5× 3 419952 190813 610765 65694
4× 5 402603 304862 707465 171222
3× 8 750745 493702 1244447 84314
5× 4 2220291 1708671 3928962 2234554
3× 9 2678172 2992236 5670408 270004

TABLE 1 – Number of descents required for sol-
ving various sizes of Connect Four

5.1 Connect Four

Connect Four is a commercial two-player game
where players drop a red or a yellow piece on a
7 × 6 grid. The first player to align four pieces
either horizontally, vertically or diagonally wins
the game. The game ends in a draw if the board
is filled and neither player has an alignment. The
game was solved by James D. Allen and Victor
Allis in 1988 [1].

Table 1 gives the number of descents for proving
the outcomes for various sizes of Connect Four.
The first column is the size of the board. The se-
cond column is the number of descents of PNS
to prove that the games is not won. The third co-
lumn is the number of descents required by PNS
to prove the game is not lost. The third column
is the sum of these two numbers which is the
number of descents required by PNS to prove
the game is a draw. The last column gives the
number of descents for GPNS. We can see that
the number of descents for GPNS are 1.75 times
to 21 times smaller than the number of descents
required by PNS to prove the draw.

Table 2 gives the corresponding numbers for in-
ternal frontiers nodes initialized with the mobi-
lity. The number of descents for GPNS is 1.5
times to 10.75 times smaller than the number of
descents required for PNS.

5.2 Woodpush

The game of Woodpush is a recent game inven-
ted by combinatorial game theorists to analyze
a game that involve forbidden repetition of the
same position. A starting position consists of
some pieces for the left player and some for the
right player put on an array of predefined length



PNS GPNS
Size ≤ Draw ≥ Draw Sum

3× 4 863 615 1478 625
3× 5 3571 2227 5798 2092
4× 3 3465 3502 6967 2094
3× 6 10958 12304 23262 6871
4× 4 43085 19965 63050 17260
3× 7 59821 45540 105361 22842
5× 3 220947 132595 353542 49187
3× 8 297542 212487 510029 69954
4× 5 302065 228880 530945 130581
5× 4 1461949 880708 2342657 1561760
3× 9 1186057 1291773 2477830 230508

TABLE 2 – Number of descents required for sol-
ving various sizes of Connect Four using mobi-
lity

# #   

FIGURE 4 – Woodpush starting position on size
10

as shown in Figure 4. A Left move consists in
sliding one of the left piece to the right. If some
pieces are on the way of the sliding piece, they
are jumped over. When a piece has an opponent
piece behind it, it can move backward and push
all the pieces behind, provided it does not repeat
the previous position. The game is won when
the opponent has no more pieces on the board.
The score of a game is the number of moves that
the winner can play before the board is comple-
tely empty.

The first column of table 3 gives the size S of
the Woodpush line board. The second column
gives the optimal outcome of the board. The
third column gives the number of descents re-
quired by PNS to prove the outcome is smal-
ler than or equal to the optimal outcome. The
fourth column gives the number of descents re-
quired by PNS to prove the outcome is greater
than or equal to the optimal outcome. The fifth

PNS GPNS
S real(n) ≤ real(n) ≥ real(n) Sum Dicho.

6 −1 177 121 298 682 226
7 −1 281 924 1205 2744 1257
8 −1 1643 2570 4213 10867 4331
9 −1 6828 14814 21642 54417 16771
10 −2 37549 27009 64558 147383 71147
11 −1 80557 238088 318645 999552 388698

TABLE 3 – Number of descents required for sol-
ving various sizes of Woodpush

PNS GPNS
S real(n) ≤ real(n) ≥ real(n) Sum Dicho.

6 −1 141 97 238 457 236
7 −1 192 681 873 2223 1127
8 −1 1139 1718 2857 7039 3274
9 −1 4035 9609 13644 35166 12689
10 −2 30255 17124 47379 106499 53098
11 −1 43605 142374 185979 603411 261128

TABLE 4 – Number of descents required for sol-
ving various sizes of Woodpush using mobility

column is the sum of the two previous numbers,
it is the number of descents required by PNS to
prove the outcome if we already know the out-
come of the game. The sixth column is the num-
ber of descents required if a dichotomic search
on the outcomes is used to decide which PNS
are tried to find the optimal outcome, the out-
comes ranging from -16 to 16. The last column
gives the number of descents of GPNS to prove
the optimal outcome. We can observe that the
number of descents of GPNS are close to the
number of descents of Sum. They are 1.21 to
0.81 times smaller. When compared to the di-
chotomic search GPNS has 2 to 3 times fewer
descents.

Table 4 gives the corresponding results using
mobility. Again the number of descents of
GPNS is close to the number of descents of
Sum.

6 Conclusion and discussion

We have presented a generalized Proof Num-
ber algorithm that solves games with multiple
outcomes in one run. Running PNS multiple
times to prove an outcome develops the same
nodes multiple times. In GPNS these nodes are
developed only once. For small Connect Four
boards, GPNS solves the games with up to 21
times less descents than PNS. For Woodpush,
GPNS solves the games with a number of des-
cents close to the number of descents used by
PNS if it already knows the optimal outcome of
the game. In future work we plan to adapt the
PN2 algorithm to GPNS, possibly leading to a
GPNS2 algorithm that exchanges time for me-
mory.

Références
[1] Louis Victor Allis. A knowledge-based ap-

proach of connect-four the game is solved :



White wins. Masters thesis, Vrije Univer-
sitat Amsterdam, Amsterdam, The Nether-
lands, October 1988.

[2] Louis Victor Allis. Searching for Solu-
tions in Games an Artificial Intelligence.
Phd thesis, Vrije Universitat Amsterdam,
Maastricht, 1994.

[3] Louis Victor Allis, M. van der Meulen,
and H. Jaap van den Herik. Proof-Number
Search. Artificial Intelligence, 66(1) :91–
124, 1994.

[4] Tristan Cazenave and Abdallah Saffidine.
Score bounded Monte-Carlo tree search.
In Computer and Games, 2010.

[5] Akihiro Kishimoto and Martin Müller. A
solution to the GHI problem for depth-
first proof-number search. Information
Sciences, 175(4) :296–314, 2005.

[6] David A. McAllester. Conspiracy numbers
for min-max search. Artificial Intelligence,
35(3) :287–310, 1988.

[7] Carsten Moldenhauer. Game tree search
algorithms for the game of cops and rob-
ber. Master’s thesis, University of Alberta,
2009.

[8] A. Nagai. A new depth-first search algo-
rithm for AND/OR trees. Master’s thesis,
University of Tokyo, 1999.

[9] A. Nagai. Df-pn algorithm for searching
AND/OR trees and its applications. Phd
thesis, Department of Information Science,
University of Tokyo, 2002.

[10] Stuart Russell and Peter Norvig. Artificial
Intelligence : A Modern Approach (2nd
Edition). Prentice Hall, 2 edition, Decem-
ber 2002.

[11] Maarten P. D. Schadd, Mark H. M. Wi-
nands, Jos W. H. M. Uiterwijk, H. Jaap
van den Herik, and M. H. J. Bergsma. Best
Play in Fanorona leads to Draw. New
Mathematics and Natural Computation,
4(3) :369–387, 2008.

[12] Jonathan Schaeffer. Conspiracy numbers.
Artificial Intelligence, 43(1) :67–84, 1990.

[13] Jonathan Schaeffer. Game over : Black to
play and draw in Checkers. ICGA Journal,
30(4) :187–197, 2007.

[14] Jonathan Schaeffer, Neil Burch, Yngvi
Björnsson, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve
Sutphen. Checkers is solved. Science,
317(5844) :1518, 2007.

[15] M. Seo. The C* algorithm for AND/OR
tree search and its application to a tsume-
shogi program. Master’s thesis, Departe-
ment of Information Science, University of
Tokyo, 1995.

[16] M. Seo, H. Iida, and J.W.H.M. Uiterwijk.
The PN*-search algorithm : Application to
tsume-shogi. Artificial Intelligence, 129(1-
2) :253–277, 2001.

[17] H. Jaap van den Herik and Mark Wi-
nands. Proof-Number Search and Its Va-
riants. Oppositional Concepts in Compu-
tational Intelligence, pages 91–118, 2008.


