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Automated verification of mechanisms
Requirements:

i Quantitative aspects
ii Imperfect information (II)
iii Ability to express complex solution concepts

Quantitative and epistemic version of Strategy Logic (SLK[F ]) 1

1Strategic Reasoning in Automated Mechanism Design (Maubert et al., KR 2021) 3/33



Related Works

• Logics for Strategic Reasoning:
◦ ATL and extensions (Alur, Henzinger, and Kupferman 2002)
◦ Strategy Logic (SL) (Chatterjee, Henzinger, and Piterman 2010)
◦ SL with II and knowledge operators (Berthon et al. 2021; Belardinelli et al.

2020; Maubert and Murano 2018)
◦ SL[F ] (Bouyer et al. 2019)
◦ Our work: SLK[F ] SL with quantitative semantics and knowledge operators
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SLK[F ] Syntax

• Syntax
◦ Propositions p

◦ Functions f(φ, . . . , φ)
e.g. x 7→ −x

x, y 7→ max(x, y)

◦ Strategy quantifiers ∃sa. φ and bindings (a, sa)φ

◦ Epistemic operator: Kaφ

◦ Temporal operators: Xφ and φUφ (and thus Fφ and Gφ)
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Concurrent Game Structure

• Weighted Concurrent Game Structure (wCGS) G
◦ state-transition model
◦ state/position: proposition p with a weight
◦ transition: joint action
◦ observation relation: each agent can not distinguish between states

• Strategy Stra of agent a: maps positions to actions
• Assignment χ: maps agents and variables to strategies
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SLK[F ] Semantics
Let G be a wCGS, and χ an assignment. Satisfaction value JφKGχ(v) ∈ [−1, 1]
of a formula φ in a position v is defined as follows
• JpKGχ(v) = ℓ(v, p)

• J∃sa. φKGχ(v) = max
σ∈StraJφKGχ[sa 7→σ](v)

• J(a, sa)φKGχ(v) = JφKGχ[a7→χ(sa)]
(v)

• JKaφKGχ(v) = minv′∼avJφKGχ(v′)

• Jf(φ1,. . . , φm)KGχ(v) = f(Jφ1KGχ(v), . . . , JφmKGχ(v))

• Fφ maximises the values of φ over all future points in time
• Gφ minimizes the values of φ over all future points in time
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Reasoning about
Auction Mechanisms

9/33



Social choice functions and mechanisms
• Split the SCF into choice and payment functions: f = (x, {pa})

• Mechanisms as wCGS :
i One initial position for each possible type profile
ii Types do not change
iii Each agent knows her type
iv Every play reaches a terminal position

Example (Dutch Auction)
- A position ⟨p, {xa}, t, {θa}⟩
- An initial position ⟨1, 0, . . . , 0, 0,−1, θ1, . . . , θn⟩
- Transition: p′ = p− dec if everyone waits

Otherwise, allocate the good to the agent who bet, she pays p
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Social choice functions and mechanisms

Figure 1: Mechanism timeline

One initial state (types are omitted) - Action bid is written b and wait is w.
11/33



Solution concepts

• Nash equilibrium (NE)

NE(s) :=
∧
a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)F(ter ∧ utila)

≤(Ag, s)F(ter ∧ utila)
]

• Dominant strategy equilibrium (DSE)

DSE(s) :=
∧
a∈Ag

DS(sa, a)

where DS(sa, a) if sa weakly maximizes a’s utility, for all strategies of
other agents.
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Implementation of SCF

• Alternatives Alt
• Agent’s type θa ∈ Θa

• Social choice function (SCF) f : Θ → Alt
• Atomic propositions for describing the alternatives
• Let E ∈ {NE,DSE}
• Mechanism G E-implements the SCF f if they assign the same alternative

in some E-equilibrium, for all type profiles θ.

13/33



Mechanism Properties

• Individual Rationality (IR): define IR :=
∧

a∈Ag 0 ≤ utila
Let G be a mechanism that E-implements f.

Proposition (IR)
f is individually rational iff IR has the satisfaction value 1 in the E-equilibrium
implementing f (for all θ ∈ Θ).
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Mechanism Properties

• Strategyproofness (SP)
Let θ̂a be the truth-revealing strategy for a
G is direct revelation mechanism

Proposition (SP)
G is SP if JDSE(s)KGχ(vθι ) = 1 for all θ ∈ Θ, where χ(sa) = θ̂a for each a

• Efficiency, Pareto optimality, budget-balance
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Revenue benchmarks with knowledge

• Mechanisms with possibilistic beliefs B (Chen and Micali 2015)
• 2nd Belief Benchmark denoted 2nd(B):

i The maximum type each agent a is sure someone has
ii The second highest of such values (for all agents)

φsmv
a := Ka max

a′∈Ag
(typea′)

φ2nd := 2nd-max(φsmv
a1 , . . . , φsmv

an )

Proposition (Revenue benchmark)
Given a mechanism G , a position v and a belief profile B(v), it holds that
Jφ2ndKG(v) = 2nd(B(v)).
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Model Checking and
Synthesis

17/33



Model-checking
Model-checking problem (MC) for SLK[F ]:
Given a sentence φ, a wCGS G , a position v in G and a predicate P ⊆ [−1, 1],
decide whether JφKG(v) ∈ P .

Theorem (MC for SLK[F ])
Assuming that functions in F can be computed in polynomial space, model
checking SLK[F ] with imperfect information and memoryless agents is
PSPACE-complete.
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Synthesis of Mechanisms

• Creating mechanisms from a logical specification in SL[F ]2

• Satisfiability of SL (thus, SL[F ]) is undecidable in general
• Decidable cases

Theorem (Satisfiability of SL[F ])
The satisfiability of SL[F ] is decidable in the following cases

◦ wCGS with bounded actions
◦ Turn-based wCGS

2Automated Synthesis of Mechanisms (Mittelmann et al., IJCAI 2022) 19/33



Optimal mechanism synthesis

Algorithm 1: Optimal mechanism synthesis

Data: A SL[F ] specification Φ and a set of possible values for atomic
propositions V

Result: A wCGS G such that JΦKG is maximal
Compute ṼalΦ,V ;
Let ν1, . . . , νn be a decreasing enumeration of ṼalΦ,V ;
for i=1. . . n do

Solve V- satisfiability for Φ and ϑ = νi;
if there exists G such that JΦKG ≥ νi then

return G;
end

end
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Japanese auction

• AG((initial → price = 0 ∧ ¬terminal) ∧ (XG¬initial ∧ F terminal))
• AG(sold ↔ choice ̸= −1)

• AG((¬sold ∧ price+ inc ≤ 1) → (price+ inc = Xprice ∧ ¬Xterminal))
• AG((sold ∨ price+ inc > 1) → (price = Xprice ∧Xterminal))
• AG(choice = winsa ↔ bida ∧

∧
b ̸=a ¬bida)

• AG(choice = −1 ↔ ¬(
∨

a∈Ag(bida ∧
∧

b̸=a ¬bida)))
• AG

(∧
a∈Ag(choice = winsa → paymenta = price)

)
• AG

(∧
a∈Ag(choice ̸= winsa → paymenta = 0)

)
• ∧

θ∈Θ ∃s.NE(s,θ) ∧ F(terminal ∧ EF(θ))

Proposition
There exists a wCGS such that the satisfaction value of these rules is 1. 21/33



Computational Complexity
Legacy of Strategy Logic

Synthesis of Mechanism
In general k + 1-EXPTIME.

Japanese Auction: 3-EXPTIME
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Conclusion

• Logic-Based Mechanism Design
• Verifying properties → model check SLK[F ]-formulas (KR’21)
• Generating mechanisms → synthesis from SL[F ]-formulas (IJCAI’22)
• Probabilistic setting (AAAI’23)

◦ Bayesian mechanisms
◦ Mixed strategies
◦ Randomized mechanisms
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Going Further

• Previous logical approaches are deterministic

• Bayesian and randomized mechanisms

• Challenges for a general approach
◦ Settings: deterministic or randomized mechanisms, incomplete

information, mixed or pure strategies, and direct or indirect mechanisms
◦ Time-line for revealing the incomplete information

• Framework for MD with Probabilistic Strategy Logic (PSL )

• Automatic verification through PSL model checking

24/33



Bayesian Mechanism Design

• A (randomized) social choice function (SCF) (similarly, mechanism) is a
function that maps type profiles (resp, strategy profiles) to probability
distributions over the set of alternatives.

• Mechanism as stochastic transition systems: labels on terminal states
indicate the alternative chosen
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Example BIN-TAC auction

Figure 2: System representing the “Buy-It-Now or Take-a-Chance" (BIN-TAC) auction.
Continuous lines are transitions with prob. 1 and dashed lines are transitions with
prob. 1

h . 26/33



Expected utilities

Figure 3: Mechanism timeline

Probability Strategy Logic captures the utility of agent a
• ex ante Ee.a.

a (s): expected utility given the type profile distribution
• interim Ee.i.

a (s, θa) expected utility given agent a’s type and the
distribution of type profiles

• ex post Ee.p.
a (s,θ) expected utility given a type profile 27/33



Expected utilities
In more details

Figure 4: PSL encoding
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Solution concepts
Let s = (sa)a∈Ag denote a strategy (variable) profile

s is a Nash equilibrium (NE) if for every agent a and for every θ, sa is the best
response (w.r.t. alternative strategy ta) that a has to s−a when the type profile
is θ

NE(s) :=
∧
θ∈Θ

∧
a∈Ag

∀ta.Ee.p.
a ((s−a, ta),θ) ≤ Ee.p.

a (s,θ)

s is a Bayesian-Nash equilibrium (BNE) if for every agent a and every θa, sa is
the best response that a has to s−a when her type is θa, in expectation over
the other types θ−a

BNE(s) :=
∧
a∈Ag

∧
θa∈Θa

∀ta.Ee.i.
a ((s−a, ta), θa) ≤ Ee.i.

a (s, θa)
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Implementation of an SCF
Given an equilibrium concept E, a mechanism E-implements an SCF f if there
exists a strategy profile σ(θ) that is an E-equilibrium and it assigns the same
probability distribution as f under strategies σ(θ), for any types θ3.

Let G be a system representing a mechanism and φf,s be the PSL formula
expressing whether f assigns the same probability distribution as G under s.

G E-implements an f if

G, vι |= ∃s.E(s) ∧ φf,s

3Generalised from Parkes 2001 30/33



Mechanism properties
An SCF f is (interim) IR if for every θ∈Θ and agent a, their interim utility is at
least 0

Given a mechanism G E-implementing f , G is interim IR if

G, vι |= ∃s.E(s) ∧ F(terminal ∧ φf,s ∧
∧
θ∈Θ

IR(s,θ))

where IR(s,θ) :=
∧

a∈Ag 0 ≤ Ee.i.
a (s, θa)
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Mechanism properties
A direct mechanism is BIC if the truth-revealing strategy profile (θ̂a)a∈Ag is a
BNE for any θ ∈ Θ

Let G be a system representing a mechanism, G is BIC if

G, χ[s → (θ̂a)a∈Ag], vι |= BNE(s)

Evaluating mechanisms → model-checking PSL -formulas, which is decidable
for memoryless strategies
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Conclusion

• Bridge between the economics’ approach to MD and formal reasoning in
Multi-Agent Systems

• General approach for verification of mechanisms using SL[F ] and
Bayesian mechanisms using PSL

• Future work
◦ Social Good
◦ Practical Tools!

33/33



(Logic-based) Automated Mechanism Design

Munyque Mittelmann 1 Bastien Maubert 1

Aniello Murano 1 Laurent Perrussel 2

1University of Naples “Federico II”

2IRIT - University of Toulouse Capitole

laurent.perrussel@irit.fr

UNSW KR Conventicle - May 2024

33/33



References I

Maubert, B. et al. (2021). “Strategic Reasoning in Automated Mechanism Design”. In: KR.
Alur, R., T.A. Henzinger, and O. Kupferman (2002). “Alternating-time temporal logic”. In: J. ACM

49.5, pp. 672–713. URL: https://doi.org/10.1145/585265.585270.
Chatterjee, K., T. A. Henzinger, and N. Piterman (2010). “Strategy Logic”. In: Inf. Comput. 208.6,

pp. 677–693. DOI: 10.1016/j.ic.2009.07.004. URL:
http://dx.doi.org/10.1016/j.ic.2009.07.004.

Berthon, R. et al. (2021). “Strategy Logic with Imperfect Information”. In: ACM Trans. Comput.
Logic 22.1.

Belardinelli, F. et al. (2020). “Verification of multi-agent systems with public actions against
strategy logic”. In: Artif. Intell. 285.

Maubert, B. and A. Murano (2018). “Reasoning about Knowledge and Strategies under
Hierarchical Information”. In: KR.

Bouyer, P.et al. (2019). “Reasoning about Quality and Fuzziness of Strategic Behaviours”. In:
IJCAI. DOI: 10.24963/ijcai.2019/220.

Chen, Jing and Silvio Micali (2015). “Mechanism design with possibilistic beliefs”. In: J. Econ.
Theory 156, pp. 77–102.

Mittelmann, M. et al. (2022). “Automated Synthesis of Mechanisms”. In: To appear at IJCAI.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2009.07.004
http://dx.doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.24963/ijcai.2019/220


References II
Parkes, D. (2001). Iterative combinatorial auctions: Achieving economic and computational

efficiency. Univ. of Pennsylvania Philadel.


	Overall Goal
	Quantitative Strategy Logic with Imperfect Information
	Reasoning about Mechanisms
	Verification of Mechanisms with Model Checking
	Model Checking and Synthesis
	Synthesis of Mechanisms
	Conclusion
	References

