
Francisco Durán and Vlad Rusu (Eds.):
Second International Workshop on Algebraic Methods
in Model-Based Software Engineering 2011 (AMMSE’11)
EPTCS 56, 2011, pp. 81–97, doi:10.4204/EPTCS.56.6

c© F. Durán, M. Gogolla & M. Roldán
This work is licensed under the
Creative Commons Attribution License.

Tracing Properties of UML and OCL Models
with Maude

Francisco Durán
ETSI Informática. Universidad de Málaga, Spain

Martin Gogolla
University of Bremen, Germany

Manuel Roldán
ETSI Informática. Universidad de Málaga, Spain

The starting point of this paper is a system described in form of a UML class diagram where system
states are characterized by OCL invariants and system transitions are defined by OCL pre- and post-
conditions. The aim of our approach is to assist the developer in learning about the consequences
of the described system states and transitions and about the formal implications of the properties
that are explicitly given. We propose to draw conclusions about the stated constraints by translat-
ing the UML and OCL model into the algebraic specification language and system Maude, which is
based on rewrite logic. We will concentrate in this paper on employing Maude’s capabilities for state
search. Maude’s state search offers the possibility to describe a start configuration of the system and
then explore all configurations reachable by rewriting. The search can be adjusted by formulating
requirements for the allowed states and the allowed transitions.

1 Introduction

In the last years, model-driven development has become the topic of various research activities. The
employment of models in all phases of software development and for different purposes is said to offer
a higher level of abstraction than traditional code-centric development. Models should concentrate on
crucial properties of a system to be developed or to be documented. Therefore, particular attention must
be paid to checking such properties in order to guarantee software quality. For example, one is interested
in verifying whether the formulated model properties are consistent, i.e., there are no contradictions
between the properties, or one wants to check whether some further property is implied by other fixed
properties. This paper will basically use UML and OCL to formulate models and properties in form
of OCL constraints. OCL offers to express properties regarding the system states by invariants and
properties concerning system transitions by pre- and postconditions. Thus static and dynamic aspects
can be handled.

Given a UML and OCL model of a system employing invariants and pre- and postconditions as the central
description means, the developer frequently wants to know about the consequences on the described
system states and transitions and about the formal implications of the properties that are explicitly given.
For example, given some invariant and some state, one wants to check whether another state, where a
further invariant does hold, can be reached by valid transitions or not. Concerning operation pre- and
postconditions, the developer could wish to see all valid operation calls in a given state which satisfy the
preconditions. Another question is whether from a given start state another explicitly given end state can
be reached by valid operations such that all intermediate states are respecting the invariants. Questions
like these and further ones will be handled in our approach. For example, in our approach it is also

http://dx.doi.org/10.4204/EPTCS.56.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

82 Tracing OCL with Maude

possible to ask for all sequences of messages and for all objects which have to be created in order to
reach a state satisfying specific OCL constraints.

On the technical level, we want to draw conclusions about the stated constraints by translating the UML
and OCL model into the algebraic specification language and system Maude. Maude is based on rewrite
logic, is a well-established language, and offers sophisticated tools for the analysis of specifications [4].
For example, Maude allows the developer to check the satisfiability of LTL formulas using its model
checker, or to prove system properties with the inductive theorem prover ITP. However, we will concen-
trate in this paper on employing Maude’s capabilities for reachability analysis: we assume invariants are
represented by state predicates, operations by Maude rules and pre- and postconditions by predicates as
well. Basically, Maude’s state search functionality offers the possibility to describe a start configuration
of the system and then explore all configurations reachable from it by rewriting (or a finite subset of all
reachable configurations by imposing a maximal depth on the graph of all possible configurations). The
search can be adjusted by formulating requirements for the allowed states and the allowed transitions. To
represent UML model in Maude and to evaluate OCL expressions on such models we use mOdCL [11].

We assume the reader is familar with the Maude representation of classes, objects and configurations as,
for example, described in [4]. We nevertheless provide a short description of the required Maude features
in Section 3. The rest of this paper is structured as follows. In Section 2 we introduce our running
example. Section 3 discusses the mOdCL representation of OCL types, user-defined UML classes, and
OCL constraints. Section 4 concentrates on system dynamics by introducing the general approach to
handle operation calls. Section 5 shows how to exploit properties of the model by employing the Maude
state search. Section 6 finishes with concluding remarks and a brief discussion of future work.

2 Running Example

Our running example describes a simple marriage world in which persons can get married and can get
divorced. In UML terms, we have a class Person and two enumerations Gender (with literals female,
male) and CivilStatus (with literals single, married, divorced). In the Person class we have
attributes civstat, gender, wife and husband.

class Person
attributes

civstat :CivilStatus gender :Gender
wife :Set (Person) husband :Set (Person)

end

For the example, we have decided to present the spouses with set-valued attributes, because we want
to show how to use OCL expressions to avoid situations like polygamy and homosexual marriage, and
because we wanted to avoid attributes being undefined. If we would have single-valued attributes, e.g.,
wife:Person, then an unmarried male would be represented with wife being equal to undefined,
whereas in our model this is represented as wife being equal to the empty set. In the Person class there
are two operations for marrying and divorcing explained in more detail below. We have developed and
checked our example with the UML and OCL tool USE [6]. See Figure 1.

As shown in the following, the states of the model are restricted by a number of OCL invariants and the
transitions in the model, the operation calls, are required to obey certain operation contracts in form of
OCL pre- and postconditions.

F. Durán, M. Gogolla & M. Roldán 83

Figure 1: Snapshot of the USE tool for one of the example scenarios.

A person should not be married to a person of the same gender (femaleHasNoWife and maleHas-

NoHusband), a person can have at most one spouse (atMostOneHusband and atMostOneWife), and
marriage is a symmetric association (wifeHusbandInverse). We can express these invariants for the
Person class in OCL:

inv femaleHasNoWife : gender=female implies wife−>isEmpty ()
inv maleHasNoHusband : gender=male implies husband−>isEmpty ()
inv atMostOneHusband : husband−>size ()<=1
inv atMostOneWife : wife−>size ()<=1
inv wifeHusbandInverse :

(wife−>notEmpty () implies wife .husband−>includes (self)) and
(husband−>notEmpty () implies husband .wife−>includes (self))

In order to guarantee consistency of the attribute values, one could additionally state the invariant
(civstat=married) = (wife->notEmpty() or husband->notEmpty()).

Class Person has a marry(aSpouse:Person) operation. If (a) the argument aSpouse of the oper-
ation is defined,1 (b) both the person receiving the message and the argument aSpouse in the message
are not married, and (c) both persons have different gender, then the operation results in a state where
both persons are married. The operation can be characterized as follows in OCL:2

pre aSpouseDefined : aSpouse .isDefined

1In OCL, there is an exception element representing undefined; it is possible to pass this undefined element as an argument
to a marry call.

2Given the first part of the consequent husband=Set{aSpouse} in the femaleHasMarriedHusband con-
straint, one could simplify its second part to aSpouse.civstat=married assuming that the formal operation param-

84 Tracing OCL with Maude

pre isUnmarried : civstat<>married
pre aSpouseUnmarried : aSpouse .civstat<>married
pre differentGenders : gender<>aSpouse .gender
pos t isMarried : civstat=married
pos t femaleHasMarriedHusband : gender=female implies

husband=Set{aSpouse} and husband .civstat−>forAll (cs |cs=married)
pos t maleHasMarriedWife : gender=male implies

wife=Set{aSpouse} and wife .civstat−>forAll (cs |cs=married)

Two married persons can get divorced using the divorce() operation. This operation can be specified
in OCL as follows:

pre isMarried : civstat=married
pos t isDivorced : civstat=divorced
pos t husbandDivorced : gender=female implies

husband−>isEmpty () and husband@pre .civstat−>forAll (cs |cs=divorced)
pos t wifeDivorced : gender=male implies

wife−>isEmpty () and wife@pre .civstat−>forAll (cs |cs=divorced)

3 The mOdCL Representation of Class Diagrams

The representation of UML models used in mOdCL is described in detail in [11]. This representation is
inspired by the representation of object-oriented modules in Maude, as those used in Maude-based meta-
modeling frameworks such as MOMENT [1], Maudeling [12], and e-Motions [10]. In these approaches,
class diagrams are represented as Maude object-oriented modules, and system states as configurations of
objects. The representation used in mOdCL has its own particularities, mainly in the representation of
attributes, links and methods, and of course in the support of OCL. In comparison to other Maude-like
approach to UML and OCL [2, 5], mOdCL is the only Maude implementation providing support for pre-
and postconditions, and the only one supporting the dynamic validation of OCL constraints.

We briefly describe in the following sections the representation of class diagrams and OCL constraints
used in mOdCL illustrating it with our running example.

3.1 Object-Oriented Programming in Maude

Maude [3, 4] is a high-level language and a high-performance system that supports membership equa-
tional logic and rewriting logic specification and programming of systems.

Membership equational logic [8], a Horn logic whose atomic sentences are equalities t = t ′ and mem-
bership assertions of the form t : S, stating that a term t has sort S. Such a logic extends order-sorted
equational logic, and supports sorts, subsort relations, subsort polymorphic overloading of operators, and
the definition of partial functions with equationally defined domains.

Rewriting logic [7] is a logic of change that can naturally deal with state and with highly nondeterministic
concurrent computations. In rewriting logic, the state space of a distributed system is specified as an
algebraic data type in terms of an equational specification (Σ,E), where Σ is a signature of sorts (types)
and operations, and E is a set of equational axioms. The dynamics of a system in rewriting logic is
then specified by rewrite rules of the form t → t ′, where t and t ′ are Σ-terms. This rewriting happens

eter aSpouse cannot be changed by the operation. And similarly for the maleHasMarriedWife constraint. However,
we prefer in our example the explicit formulation.

F. Durán, M. Gogolla & M. Roldán 85

modulo the equations E, describing in fact local transitions [t]E → [t ′]E . These rules describe the local,
concurrent transitions possible in the system, i.e. when a part of the system state fits the pattern t (modulo
the equations E) then it can change to a new local state fitting pattern t ′.

In Maude, concurrent object-oriented systems can be naturally modeled in Maude as multisets of objects
and messages, loosely coupled by some suitable communication mechanism. The basic sorts needed to
describe an object system are: Object, Msg (messages), and Configuration.

Given a class C with attributes a1:S1, ..., an:Sn, where ai are attribute identifiers and Si are the sorts of
the corresponding attributes, objects of such a class C are then record-like structures of sort Object of
the form < O :C | a1:v1, ..., an:vn >, where O is the (unique) identifier of the object, and vi are the
current values of its attributes.

Objects can interact in a number of different ways, including message passing. Messages are declared in
Maude as operations of sort Msg.

To represent objects, additional sorts are available: Oid (object identifiers), Cid (class identifiers),
Attribute (named elements of objects’ states), and AttributeSet (comma-separated multisets of
attributes). Thus, for example, for a class Account with a single attribute balance of sort Int, and
messages withdraw and transfer we have the following declarations:

s o r t Account .
s u b s o r t Account < Cid .
op Account : −> Account [ctor] .
op balance :_ : Int −> Attribute [ctor] .

op withdraw : Oid Int −> Msg [ctor] .
op transfer : Oid Oid Int −> Msg [ctor] .

Thus, given the predefined operator
op <_ :_ |_> : Oid Cid AttributeSet −> Object [ctor] .

we can represent an account object with identifier a with balance 5 as a term
< a : Account | balance : 5 >

and a message to a to withdraw 3 as
withdraw (a , 3)

In a concurrent object-oriented system, the concurrent state, which is called a configuration, has the
structure of a multiset made up of objects and messages that evolves by concurrent rewriting using
rules that describe the effects of the communication events of objects and messages. The predefined
sort Configuration represents configurations of Maude objects and messages, with none as empty
configuration and the empty syntax operator __ as union of configurations.

s o r t Configuration .
s u b s o r t s Object Message < Configuration .
op none : −> Configuration [ctor] .
op __ : Configuration Configuration −> Configuration

[ctor assoc comm id : none] .

Thus, such rewrite rules define transitions between configurations, and their general form is:

crl [r] :
< O1 : C1 | atts1 > ... < On : Cn | attsn >

86 Tracing OCL with Maude

M1 ... Mm
=> < Oi1 : C′i1 | atts′i1 > ... < Oik : C′ik | atts′ik >

< Q1 : C′′1 | atts′′1 > ... < Qp : C′′p | atts′′p >
M′1 ... M′q

if Cond .

where r is the rule label, M1...Mm and M′1...M
′
q are messages, O1...On and Q1...Qp are object identifiers,

C1...Cn, C′i1 ...C
′
ik and C′′1 ...C

′′
p are classes, i1...ik is a subset of 1...n, and Cond is a Boolean condition (the

rule’s guard). The result of applying such a rule is that: (a) messages M1...Mm disappear, i.e., they are
consumed; (b) the state, and possibly the classes of objects Oi1 ...Oik may change; (c) all the other objects
O j vanish; (d) new objects Q1...Qp are created; and (e) new messages M′1...M

′
q are created, i.e., they are

sent. Rule labels and guards are optional. When several objects or messages appear in the left-hand side
of a rule, they need to synchronize in order for such a rule to be fired.

Class inheritance is directly supported by Maude’s order-sorted type structure. A subclass declaration C

< C’, indicating that C is a subclass of C’, is a particular case of a subsort declaration C < C’, by which
all attributes, messages, and rules of the superclasses, as well as the newly defined attributes, messages
and rules of the subclass characterize its structure and behavior. Multiple inheritance is also supported
in Maude [4].

3.2 OCL Basic Types

Basic predefined OCL types are directly mapped on predefined Maude sorts. Thus, the OCL types
Boolean, Integer, Real and String are mapped into the Maude predefined sorts Bool, Int, Float,
and String, respectively. User-defined classes are mapped on the Maude predefined sort Oid (of ob-
ject identifiers). OCL predefined collection types are mapped into sorts Set, Bag, OrderedSet, and
Sequence. All these sorts are subsorts of OclType.

In OCL, the Enum sort is intended to be used to define enumeration types. Thus, types Gender and
CivilStatus are declared as enumerations by declaring them as subsorts of Enum. The values of the
types are then declared as constants of the respective types. E.g., the declarations for CivilStatus are:

s o r t CivilStatus .
s u b s o r t CivilStatus < Enum .
ops single married divorced : −> CivilStatus [ctor] .

Classes are represented following the standard representation of classes in Maude (see Section 3 and [4]).
The Attribute sort provides the syntax for attributes and role ends in the objects, given by its name,
of sort AttributeName, and its type, of sort OclType.

op _ :_ : AttributeName OclType −> Attribute [ctor] .

The name of a given class C is represented as a constant C of the Maude sort Cid, and its attributes
and role ends as constants of the mOdCL sort AttributeName. Thus, for the Person class we add
declarations:

s o r t Person .
s u b s o r t Person < Cid .
op Person : −> Person [ctor] .
ops civstat gender husband wife : −> AttributeName [ctor] .

Role ends with multiplicity 1 are represented as attributes of sort Oid, and role ends with multiplicity *
as attributes of sort Set (for Oid sets).

F. Durán, M. Gogolla & M. Roldán 87

An operation op(arg1:type1,. . .,argn:typen): type is represented as a constant op, of sort OpName
(of operation names), and constants arg1, . . ., argn, of sort Arg (of arguments). Thus, operations
marry(aSpouse:Person) and divorce() require the following declarations:

ops marry divorce : −> OpName [ctor] .
op aSpouse : −> Arg [ctor] .

Once we have defined the structural part, we can create object configurations. Since we will be using
these configurations in several commands in the following sections, we define constants abc-single
and ab-married-c-single representing, respectively, the object configurations in which persons ada,
bob, and cyd are single, and ada and bob married and cyd single, respectively.

ops ada bob cyd : −> Oid .
ops abc−single ab−married−c−single : −> Configuration .
eq abc−single

= < ada : Person | gender : female , civstat : single , wife : Set{} , husband : Set{} >
< bob : Person | gender : male , civstat : single , wife : Set{} , husband : Set{} >
< cyd : Person | gender : male , civstat : single , wife : Set{} , husband : Set{} > .

eq ab−married−c−single
= < ada : Person | gender : female , civstat : married , wife : Set{} , husband : Set{bob} >

< bob : Person | gender : male , civstat : married , wife : Set{ada} , husband : Set{} >
< cyd : Person | gender : male , civstat : single , wife : Set{} , husband : Set{} > .

3.3 OCL Constraints Representation

In mOdCL, OCL expressions are represented as terms of sort OclExp. We can represent the OCL expres-
sions from Section 2 as corresponding mOdCL terms of sort OclExp. The mOdCL terms mirror quite
closely the OCL expressions given in Section 2. We give here a few of them for illustration purposes:

op femaleHasNoWife : −> OCL−Exp .
eq femaleHasNoWife = (context Person inv gender = female implies wife −> isEmpty ()) .

op atMostOneHusband : −> OCL−Exp .
eq atMostOneHusband = (context Person inv husband −> size () <= 1) .

op wifeHusbandInverse : −> OCL−Exp .
eq wifeHusbandInverse

= context Person inv
(wife −> notEmpty () implies wife . husband −> includes (self)) and
(husband −> notEmpty () implies husband . wife −> includes (self)) .

op aSpouseDefined : −> OCL−Exp .
eq aSpouseDefined = (aSpouse . isDefined ()) .

op femaleHasMarriedHusband : −> OCL−Exp .
eq femaleHasMarriedHusband

= (gender = female implies
husband = Set{aSpouse} and husband . civstat −> forAll (cs | cs = married)) .

op husbandDivorced : −> OCL−Exp .
eq husbandDivorced

= gender = female implies
(husband −> isEmpty () and husband @pre . civstat −> forAll (cs | cs = divorced)) .

Notice the use of constants (like femaleHasNoWife) to identify these expressions. Invariants and pre-
and postconditions are then specified by operators inv, pre and post in order to build the OclExp to
be checked when the validation process requires to inspect invariants, pre- or postconditions of a given
method, respectively.

88 Tracing OCL with Maude

op inv : −> OclExp .
ops pre post : OpName −> OclExp .

The global invariant to be satisfied is given as an operator inv defined as the conjunction of all invariant
expressions. Given the above definitions, the inv constant can be defined as:

eq inv = femaleHasNoWife and maleHasNoHusband and atMostOneHusband and
atMostOneWife and wifeHusbandInverse .

The pre and post operators must be defined for each method. These operators need the associated
operation as an argument. We only show the corresponding declarations for the marry operation; it
works analogously for divorce.

eq pre (marry) = (aSpouseDefined and isUnmarried and aSpouseUnmarried and differentGenders) .
eq post (marry) = (isMarried and femaleHasMarriedHusband and maleHasMarriedWife) .

With this structural description of the system, we can evaluate any OCL expression on object config-
urations by using the mOdCL’s eval operator. We can for instance evaluate the inv OCL expression
defined above on the abc-single object configuration introduced in Section 3.

Maude> red eval (inv , abc−single) .
r e s u l t Bool : true

4 System Dynamics

4.1 Representation of Operation Calls

Once the static part of the system is completely determined, we can specify its behavior. We could do
that in different ways, but our goal is to be able to generate execution traces leading to states satisfying
or violating given OCL constraints. However, making sure that all invariants and pre- and postconditions
are satisfied in the right places, is not an easy task. To discharge the user of the burden, mOdCL provides
facilities to perform the appropriate checks in the appropriate places just by following very simple rules.
Basically, the preconditions of an operation must be checked before its execution starts, and when it is
completed, its postconditions and the invariants must be satisfied. To be able to automatically perform
the checks before and after the execution of each operation, mOdCL expects that methods are invoked
with a call message of the form
call(<method−name>, <addressee>, <argument−list>)

and upon their completion they send a return message of the form
return(<return−value>)

The infrastructure of mOdCL will intercept these messages and will take the following measures.

The processing of a call operator results in the execution of a method, for which a context object,
representing the execution context with the appropriate information for the running method, is generated.
This object, of class Context, is of the form
< Ctx : Context | op : M , self : Id , args : Vars >

where Ctx is the identifier of the object, M is the name of the active method, Id is the identifier of the
current object, and Vars is a set of (variable name,value) pairs corresponding to the arguments of the

F. Durán, M. Gogolla & M. Roldán 89

method invocation and local variables. The modeler can make use of this Context object to get or
manipulate the value of an argument variable or a local variable.

A return message return(<return-value>) will be replaced by a resume message of the form
resume(<return−value>)

To manage the chaining of method invocations — an invoked method can invoke another one (or re-
cursively itself) — the validator uses an execution stack in which the necessary information is stored.3

mOdCL configurations are terms of sort Configuration+, which is declared as a sort with a single
constructor

op {_} : Configuration −> Configuration+ .

where one of the objects in the wrapped configuration represents the execution stack, which is represented
by a stack operator.

4.2 Operations marry and divorce

With these restrictions, we can specify the behavior of our operations as follows. Since the husband and
wife attributes are sets of object identifiers, the marry operation just adds a new husband or a new wife
to the corresponding set, depending on the gender of the receiver of the message.

vars Ctx Self Dude : Oid . vars St1 St2 : CivilStatus .
vars Gd1 Gd2 : Gender . vars Hb1 Hb2 Wf1 Wf2 : Set .

r l [MARRY] :
< Ctx : Context | op : marry , self : Self , args : arg (aSpouse , Dude) >
marry−token
< Self : Person | civstat : St1 , gender : Gd1 , husband : Hb1 , wife : Wf1 >
< Dude : Person | civstat : St2 , gender : Gd2 , husband : Hb2 , wife : Wf2 >
=> if Gd1 == female

then < Self : Person | civstat : married , gender : Gd1 , husband : Set{Dude} , wife : Wf1 >
< Dude : Person | civstat : married , gender : Gd2 , husband : Hb2 , wife : Set{Self} >

else < Self : Person | civstat : married , gender : Gd1 , husband : Hb1 , wife : Set{Dude} >
< Dude : Person | civstat : married , gender : Gd2 , husband : Set{Self} , wife : Wf2 >

fi
< Ctx : Context | op : marry , self : Self , args : arg (aSpouse , Dude) >
return (0) .

In the case of the divorce operation, the set of the corresponding husband or wife attribute is just
left empty. We use two rules to distinguish cases, depending on the gender, but show only the rule for
females.

vars Ctx Self Dude : Oid . vars St1 St2 : CivilStatus . var Wf : Set .
vars Gd1 Gd2 : Gender . vars Atts1 Atts2 : AttributeSet .

r l [DIVORCE] :
< Ctx : Context | op : divorce , self : Self , args : empty >
divorce−token
< Self : Person | civstat : St1 , gender : female , husband : Set{Dude} , Atts1 >
< Dude : Person | civstat : St2 , wife : Wf , Atts2 >
=> < Self : Person | civstat : divorced , gender : female , husband : Set{} , Atts1 >

< Dude : Person | civstat : divorced , wife : Set{} , Atts2 >
< Ctx : Context | op : divorce , self : Self , args : empty >
return (0) .

3mOdCL currently assumes a single thread of execution. A multithreaded execution would also be possible just by adding
support for multiple stacks.

90 Tracing OCL with Maude

These methods are very simple, and they are both specified so that their execution will consists in the
application of one rule. The marry-token and divorce-token operators are used to prevent the
execution of the rules corresponding to the operation out of the scope of a call to such an operation.
More intricate methods may require several rules to be executed sequentially, in which case more than a
simple token will be required.

Methods are invoked with call operators. However, for convenience, and to use a notation more
friendly, we will use the following operators.

op _ . marry (_) : Oid Oid −> Msg [msg] .
op _ . divorce () : Oid −> Msg [msg] .

These methods will be used to produce the sending of a corresponding call message.
r l [MARRY−INVOCATION] :
Self . marry (Arg)
stack (nil)
=> call (marry , Self , arg (aSpouse , Arg))

stack (nil)
marry−token .

r l [DIVORCE−INVOCATION] :
Self . divorce ()
stack (nil)
=> call (divorce , Self , empty)

stack (nil)
divorce−token .

Notice the presence of the stack operator, with nil contents in both rules, to guarantee that no new
message is sent until the execution stack is empty, that is, the processing of all previous messages has
been completed.

Given this behavior we can simulate the system by using the rewrite Maude command,4 or we can
explore all possible executions searching for states satisfying a specific property.

Maude> rew { abc−single
cyd . marry (ada)
stack (nil) } .

r e s u l t Configuration+:
{ stack (nil)
resume (marry , 0)
< ada : Person | civstat : married , gender : female , husband : Set{cyd} , wife : Set{} >
< bob : Person | civstat : single , gender : male , husband : Set{} , wife : Set{} >
< cyd : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} > }

What happens if we try to do something that does not respect the defined constraints? For instance, if
we send a marry message to an already married person, the precondition of the marry operation should
fail. mOdCL will detect situations like this and will send corresponding error messages.

Maude> rew { ab−married−c−single
cyd . marry (ada)
stack (nil) } .

r e s u l t [Configuration+] :
{ marry−token

< ada : Person | civstat : married , gender : female , husband : Set{bob} , wife : Set{} >
< bob : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} >
< cyd : Person | civstat : single , gender : male , husband : Set{} , wife : Set{} >
error ("Precondition violation" ,

4The rewrite Maude command (abbreviated rew) causes the specified term to be rewritten using the rules, equations,
and membership axioms in the given module.

F. Durán, M. Gogolla & M. Roldán 91

marry ,
aSpouse . isDefined () and civstat <> married and
gender <> aSpouse . gender and aSpouse . civstat <> married) }

The error message provides a string explaining the failure, and the OCL expression that has failed. In the
case of pre- and postconditions, the name of the operation of the condition is also indicated.

5 Tracing Properties

Notice that the configuration rewritten is a set, and so, if several messages were in it, no order in which
they are to be consumed is assumed. If we were interested in a sequence of messages with a specific order,
we could very easily specify it. But this associative-commutative configuration allows us to explore
the different traces in which certain messages may be consumed. For instance, the following search
command looks up all possible traces leading to states in which there are two persons married using
messages cyd . marry(ada), ada . marry(bob), and bob . divorce().

Maude> search { abc−single
(cyd . marry (ada))
(ada . marry (bob))
(bob . divorce ())
stack (nil) }

=>∗ { stack (nil)
Conf :Configuration }

such t h a t
eval (Person . allInstances −> exists (P |

Person . allInstances −> exists (Q |
P . wife −> includes (Q) and Q . husband −> includes (P))) ,

Conf :Configuration) .
Solution 1 (state 4)
Conf :Configuration
−−> bob . divorce ()

resume (marry , 0)
(cyd . marry (ada))
< ada : Person | civstat : married , gender : female , husband : Set{bob} , wife : Set{} >
< bob : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} >
< cyd : Person | civstat : single , gender : male , husband : Set{} , wife : Set{} >

Solution 2 (state 5)
Conf :Configuration
−−> bob . divorce ()

resume (marry , 0)
(ada . marry (bob))
< ada : Person | civstat : married , gender : female , husband : Set{cyd} , wife : Set{} >
< bob : Person | civstat : single , gender : male , husband : Set{} , wife : Set{} >
< cyd : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} >

Solution 3 (state 12)
Conf :Configuration
−−> resume (marry , 0)

resume (marry , 0)
resume (divorce , 0)
< ada : Person | civstat : married , gender : female , husband : Set{cyd} , wife : Set{} >
< bob : Person | civstat : divorced , gender : male , husband : Set{} , wife : Set{} >
< cyd : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} >

No more solutions .

The Maude search command gives us all possible reachable states satisfying the specified OCL expres-
sion. More interestingly, we have access to the paths followed for each of these solutions. By using the
show path and show path labels commands, we can get all the information on the path followed

92 Tracing OCL with Maude

up to any of the states in the search space, and specifically to the ones given as solutions of the search
command — notice the state number given on the right of the solution number.

Maude> show path labels 12 .
MARRY−INVOCATION
MARRY
DIVORCE−INVOCATION
DIVORCE
MARRY−INVOCATION
MARRY

5.1 Spontaneous Generation of Messages

This is very powerful already, but we can do more. In the above search we had to give what messages
we wanted to use to generate all possible paths. But that does not guarantee that we get all possible ways
to get a specific state. We now present a possible alternative in which new messages are spontaneously
generated. As a result of the execution we are interested in getting the sequence of messages leading to
the searched states. To obtain it, we add a messages operator that keeps the list of messages generated.

s o r t MsgList .
s u b s o r t Msg < MsgList .
op nilMsgList : −> MsgList .
op _ ;_ : MsgList MsgList −> MsgList [assoc id : nilMsgList] .

op messages : MsgList −> Msg [ctor] .

Consider the following rules, by which, if there exist two persons, a new marry message for the marriage
of these two persons is generated:

var ML : MsgList . vars Dude1 Dude2 : Oid .
vars Atts1 Atts2 : AttributeSet . var Arg : OclType .

r l [NEW−MARRY−MESSAGE] :
< Dude1 : Person | Atts1 >
< Dude2 : Person | Atts2 >
messages (ML)
=> < Dude1 : Person | Atts1 >

< Dude2 : Person | Atts2 >
hold (messages (ML ; Dude1 . marry (Dude2)))
Dude1 . marry (Dude2) .

In addition to sending a new marry message, the rule adds the generated message to the list of messages.
And, since we do not want to generate a new message until the previous one was consumed, we block
the messages operator with a hold operator.

op hold : Msg −> Msg [ctor] .

Once the operation has finished, we can unblock the message list.

var ML : MsgList . var Arg : OclType .

r l [RETURN−MARRY] :
resume (marry , Arg)
hold (messages (ML))
=> messages (ML) .

Similar rules are added to spontaneously generate new divorce messages.

F. Durán, M. Gogolla & M. Roldán 93

Notice the use of the messages operator to collect the sequence of messages generated. When a new
message is generated it is added to the list of messages in the messages operator. With it we will know
the messages used to reach a given state. We could instead use the show path command to get the
sequence of rules, and from it obtain the sequence of messages, but notice that the search command
looks for states, and only keeps the shortest path to each reached state.

We can get, e.g., the states reached when searching for married couples. Of course, the number of
reachable states satisfying this condition is infinite, and we must either limit the number of solutions to
look for or the maximum depth of the search. We can search for the first 10,000 states as follows:

Maude> search [1 0 0 0 0]
{ stack (nil)
abc−single
messages (nilMsgList) }

=>∗ { Conf :Configuration messages (ML :MsgList) }
such t h a t

eval (Person . allInstances −> exists (P |
Person . allInstances −> exists (Q |
P . wife −> includes (Q) and Q . husband −> includes (P))) ,

Conf :Configuration) .
Solution 1 (state 17)
Conf :Configuration
−−> stack (nil)

< ada : Person | civstat : married , gender : female , husband : Set{bob} , wife : Set{} >
< bob : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} >
< cyd : Person | civstat : single , gender : male , husband : Set{} , wife : Set{} >

ML :MsgList −−> ada . marry (bob)

. . .

Solution 10000 (state 131696)
Conf :Configuration
−−> stack (nil)

< ada : Person | civstat : married , gender : female , husband : Set{cyd} , wife : Set{} >
< bob : Person | civstat : divorced , gender : male , husband : Set{} , wife : Set{} >
< cyd : Person | civstat : married , gender : male , husband : Set{} , wife : Set{ada} >

ML :MsgList −−> ada . marry (cyd) ;
cyd . divorce () ;
bob . marry (ada) ;
bob . divorce () ;
cyd . marry (ada) ;
cyd . divorce () ;
ada . marry (cyd) ;
ada . divorce () ;
cyd . marry (ada)

We may also look for more interesting states. For example, we may search for states in which the
precondition of an operation fails. We must again limit the search.

Maude> search [2 0 , 2 0]
{ stack (nil)
abc−single
messages (nilMsgList) }

=>∗ { error (Str :String , ON :OpName , Exp :OCL−Exp)
Conf : [Configuration]
hold (messages (ML :MsgList)) } .

Solution 1 (state 10)
Conf : [Configuration]
−−> marry−token

< ada : Person | civstat : single , gender : female , husband : Set{mt} , wife : Set{mt} >
< bob : Person | civstat : single , gender : male , husband : Set{mt} , wife : Set{mt} >
< cyd : Person | civstat : single , gender : male , husband : Set{mt} , wife : Set{mt} >

ML :MsgList −−> bob . marry (cyd)

94 Tracing OCL with Maude

Str :String −−> "Precondition violation"
ON :OpName −−> marry
Exp :OCL−Exp
−−> aSpouse . isDefined () and civstat <> married and

gender <> aSpouse . gender and aSpouse . civstat <> married
. . .
Solution 20 (state 74)
Conf : [Configuration]
−−> marry−token

< ada : Person | civstat : married , gender : female , husband : Set{bob} , wife : Set{mt} >
< bob : Person | civstat : married , gender : male , husband : Set{mt} , wife : Set{ada} >
< cyd : Person | civstat : single , gender : male , husband : Set{mt} , wife : Set{mt} >

ML :MsgList −−> (bob . marry (ada)) ; cyd . marry (bob)
Str :String −−> "Precondition violation"
ON :OpName −−> marry
Exp :OCL−Exp −−> aSpouse . isDefined () and civstat <> married and

gender <> aSpouse . gender and aSpouse . civstat <> married

However, we can show how we cannot reach states in which invariants are not satisfied.

Maude> search [2 0 , 2 0]
{ stack (nil)
abc−single
messages (nilMsgList) }

=>∗ { error (Str :String , Exp :OCL−Exp)
Conf : [Configuration]
hold (messages (ML :MsgList)) } .

No solution .

Of course, since we have limited the search, the absence of solutions does not imply that such states do
not exist. But notice that the reachable state space is infinite because of the messages operator. Without
it, the state space is in fact small for our example. We can verify properties on our example by using an
equational abstraction [9] consisting in just removing the messages in the messages list.

var ML : MsgList .

ceq messages (ML) = messages (nilMsgList) i f ML =/= nilMsgList .

We can now, for example, prove that within our Maude description no reachable state fails the invariant.

Maude> search { stack (nil)
abc−single
messages (nilMsgList) }

=>∗ { error (Str :String , Exp :OCL−Exp)
Conf : [Configuration]
hold (messages (ML :MsgList)) } .

No solution .

Or more interestingly, that after you marry you will never be single again.

Maude> search { stack (nil)
ab−married−c−single
messages (nilMsgList)]

=>∗ { Conf : [Configuration]
messages (ML) }

such t h a t
eval (ada . civstat = single or bob . civstat = single , Conf) .

No solution .

F. Durán, M. Gogolla & M. Roldán 95

5.2 Spontaneous Generation of Objects

But why limiting ourselves to playing with ada, bob, and cyd? In the same way we can spontaneously
generate new messages to consider all possible sequences of messages, we can also think on the possi-
bility of spontaneously generating new objects. In fact, what we need is just a new or create message
that gives place to the object. We declare a new message with the identifier of the object, its class, and
its gender to generate Person objects.

op new : Oid Cid Gender −> Msg [ctor] .

As in the generation of messages, to generate a new object we need to initialize its attributes. In our
current example, they are generated single, and the only values we need to worry about are their identifier
and their gender. Genders can be assigned nondeterministically. We give two rules to generate objects of
each of the possible genders. Regarding identifiers, we use a counter operator to both indexing object
identifiers id(1), id(2), ... and limiting the number of generated objects.

op id : Nat −> Oid [ctor] .
op counter : Nat −> Msg [ctor] .

var ML : MsgList . var N : Nat . var G : Gender . var O : Oid .

ops P Q : −> Vid .

r l [NEW−MALE] :
counter (s N)
messages (ML)
=> counter (N)

new (id (N) , Person , male)
hold (messages (ML ; new (id (N) , Person , male))) .

r l [NEW−FEMALE] :
counter (s N)
messages (ML)
=> counter (N)

new (id (N) , Person , female)
hold (messages (ML ; new (id (N) , Person , female))) .

r l [PERSON−GENERATION] :
new (O , Person , G)
hold (messages (ML))
=> < O : Person | civstat : single , gender : G , husband : Set{} , wife : Set{} >

messages (ML) .

We can now look for traces reaching states with married couples as follows:
Maude> search [1 0 0 , 3 0] { stack (nil)

messages (nilMsgList)
counter (3) }

=>∗ { Conf :Configuration messages (ML :MsgList) }
such t h a t

eval (Person . allInstances −> exists (P |
Person . allInstances −> exists (Q |
P . wife −> includes (Q) and Q . husband −> includes (P))) ,

Conf) .
Solution 1 (state 121)
Conf :Configuration
−−>
stack (nil)
counter (1)
< id (1) : Person | civstat : married , gender : female , husband : Set{id (2) } , wife : Set{} >
< id (2) : Person | civstat : married , gender : male , husband : Set{} , wife : Set{id (1) } >

ML :MsgList −−> new (id (2) , Person , male) ;
new (id (1) , Person , female) ;

96 Tracing OCL with Maude

id (1) . marry (id (2))
Solution 2 (state 122)
Conf :Configuration
−−>
stack (nil)
counter (1)
< id (1) : Person | civstat : married , gender : female , husband : Set{id (2) } , wife : Set{} >
< id (2) : Person | civstat : married , gender : male , husband : Set{} , wife : Set{id (1) } >

ML :MsgList −−> new (id (2) , Person , male) ;
new (id (1) , Person , female) ;
id (2) . marry (id (1))

. . .
Solution 100 (state 2420)
Conf :Configuration
−−>
stack (nil)
counter (0)
< id (1) : Person | civstat : married , gender : female , husband : Set{id (0) } , wife : Set{} >
< id (2) : Person | civstat : single , gender : male , husband : Set{} , wife : Set{} >
< id (0) : Person | civstat : married , gender : male , husband : Set{mt} , wife : Set{id (1) } >

ML :MsgList −−> new (id (2) , Person , male) ;
new (id (1) , Person , female) ;
new (id (0) , Person , male) ;
id (1) . marry (id (0)) ;
id (0) . divorce () ;
id (0) . marry (id (1))

We can look for persons married to themselves.

Maude> search [2 0 , 2 0] { stack (nil) messages (nilMsgList) counter (3) }
=>∗ { Conf :Configuration

messages (ML :MsgList) }
such t h a t eval (Person . allInstances −> exists (P |

P . wife −> includes (P) or P . husband −> includes (P)) ,
Conf :Configuration) .

No solution .

6 Conclusions

We have made a proposal to draw consequences about stated constraints in a UML and OCL model
by translating the model into Maude. Maude allows the developer to check for system properties in
various ways. We have employed the Maude state search and were able to show that particular states
can (resp. cannot) be reached under given assumptions, i.e., by limiting the search to a finite subset of
possible configurations. We have generated scenarios, i.e., state sequences and transitions, where the
transition sequences were automatically constructed in order to achieve a path from a start state to an end
state.

We believe Maude with its sophisticated tools offers more and even stronger possibilities than the one
we have employed. The Maude ITP theorem prover could be used to achieve general propositions about
invariants. The Maude temporal logic checker could be employed for verifying and finding complex
states and transition constellations. Fine grained information about constraint failure would be desirable
for mOdCL. Larger case studies must give feedback about the practicability of our approach. All results
obtained on the Maude level must be translated back into UML and OCL, for example, in terms of object
and sequence diagrams.

F. Durán, M. Gogolla & M. Roldán 97

References
[1] Artur Boronat & José Meseguer (2008): An Algebraic Semantics for MOF. In José Luiz Fiadeiro & Paola

Inverardi, editors: Fundamental Approaches to Software Engineering, 11th International Conference, FASE
2008. Proceedings, Lecture Notes in Computer Science 4961, Springer, pp. 377–391. Available at http:
//dx.doi.org/10.1007/978-3-540-78743-3_28.

[2] Artur Boronat, Joaquı́n Oriente, Abel Gómez, Isidro Ramos & José A. Carsı́ (2006): An Algebraic Spec-
ification of Generic OCL Queries Within the Eclipse Modeling Framework. In Arend Rensink & Jos
Warmer, editors: ECMDA-FA, Lecture Notes in Computer Science 4066, Springer, pp. 316–330. Avail-
able at http://dx.doi.org/10.1007/11787044_24.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer & José
Quesada (2002): Maude: Specification and Programming in Rewriting Logic. Theoretical Computer Science
285, pp. 187–243.

[4] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer & Car-
olyn Talcott (2007): All About Maude - A High-Performance Logical Framework: How to Specify, Program,
and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science, Springer.

[5] Manuel Clavel & Marina Egea (2006): ITP/OCL: A Rewriting-Based Validation Tool for UML+OCL Static
Class Diagrams. In Michael Johnson & Varmo Vene, editors: AMAST, Lecture Notes in Computer Science
4019, Springer, pp. 368–373. Available at http://dx.doi.org/10.1007/11784180_28.

[6] Martin Gogolla, Fabian Büttner & Mark Richters (2007): USE: A UML-Based Specification Environment for
Validating UML and OCL. Science of Computer Programming 69, pp. 27–34.

[7] José Meseguer (1992): Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Com-
puter Science 96(1), pp. 73–155.

[8] José Meseguer (1998): Membership Algebra as a Logical Framework for Equational Specification. In
Francesco Parisi-Presicce, editor: Recent Trends in Algebraic Development Techniques, Lecture Notes in
Computer Science 1376, Springer, pp. 18–61.

[9] José Meseguer, Miguel Palomino & Narciso Martı́-Oliet (2008): Equational Abstractions. Theoretical Com-
puter Science 403(2-3), pp. 239–264. Available at http://dx.doi.org/10.1016/j.tcs.2008.
04.040.

[10] José Eduardo Rivera, Francisco Durán & Antonio Vallecillo (2009): A Graphical Approach for Modeling
Time-Dependent Behavior of DSLs. In: IEEE Symposium on Visual Languages and Human-Centric Com-
puting, VL/HCC 2009, Corvallis, OR, USA, 20-24 September 2009, Proceedings, pp. 51–55. Available at
http://doi.ieeecomputersociety.org/10.1109/VLHCC.2009.5295300.

[11] Manuel Roldán & Francisco Durán (2011): Dynamic Validation of OCL Constraints with mOdCL. In Jordi
Cabot, Robert Clarisó, Martin Gogolla & Burhart Wolff, editors: International Workshop on OCL and Textual
Modelling.

[12] José R. Romero, José E. Rivera, Francisco Durán & Antonio Vallecillo (2007): Formal and Tool Support for
Model Driven Engineering with Maude. Journal of Object Technology 6(9), pp. 187–207.

http://dx.doi.org/10.1007/978-3-540-78743-3_28
http://dx.doi.org/10.1007/978-3-540-78743-3_28
http://dx.doi.org/10.1007/11787044_24
http://dx.doi.org/10.1007/11784180_28
http://dx.doi.org/10.1016/j.tcs.2008.04.040
http://dx.doi.org/10.1016/j.tcs.2008.04.040
http://doi.ieeecomputersociety.org/10.1109/VLHCC.2009.5295300

	1 Introduction
	2 Running Example
	3 The mOdCL Representation of Class Diagrams
	3.1 Object-Oriented Programming in Maude
	3.2 OCL Basic Types
	3.3 OCL Constraints Representation

	4 System Dynamics
	4.1 Representation of Operation Calls
	4.2 Operations marry and divorce

	5 Tracing Properties
	5.1 Spontaneous Generation of Messages
	5.2 Spontaneous Generation of Objects

	6 Conclusions

