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Abstract

This report describes the development and implementation of the locomotion for the
Nao H25 V4 robot as used by team rUNSWift from the University of New South Wales,
Australia, for the 2014 RoboCup SPL competition. We refer to the omnidirectional
locomotion motion as a walk. The main purpose of the report is to document the 2014
walk for the UNSW 2014 SPL code release.
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1 Introduction

This report describes the rUNSWift 2014 walk for the Nao robots used in the 2014 SPL
Robocup competition in Brazil.

The scope of this report is limited to describing the bipedal gait and omni-directional lo-
comotion. It does not include kicking or other canned behaviour such as goalie dives and
standing up after a fall.

The basic walk was first developed in 2010 and described in the 2010 rUNSWift report [18]
that accompanied the code release at the time. For completeness relevant parts of that report
are included here. The 2014 walk is superior to prior bipedal rUNSWift walks in several
ways, including speed, reactivity, and integrated resting behaviour to reduce overheating.
The forward speed has increased from about 22cm/sec in 2010 to 34cm/sec in 2014, but in
competition this was clipped back to a maximum of 30cm/sec.

2 History of Walk Developments at CSE/UNSW

The Standard Platform League originally used the Sony AIBO robotic quadruped. The
league took a significant step forward in 2000 when the School of Computer Science and
Engineering (CSE), University of New South Wales (UNSW) developed a competitive walk
that later became the standard for the competition [10]. The key insight was to describe
the trajectory of the paws by a simple geometric figure that was parameterised. This made
experimentation with unusual configurations relatively easy. As a result, we were able to
devise a gait that was much faster and more stable than any other team. Since then, almost
all the other teams in the league have adopted a similar style of locomotion, some starting
from our code.

The flexibility of this representation led to another major innovation in 2003. We were
the first team to use Machine Learning to tune the robot’s gait, resulting in a much faster
walk [15]. In succeeding years, several teams developed their own ML approaches to tuning
the walk. Starting from the parameterised locomotion representation, the robots are able to
measure their speed and adjust the gait parameters according to an optimisation algorithm.

With the introduction of the Nao robots to the league in 2008, bipedal walking became the
new challenge. Research in the AI Group, CSE, UNSW includes applications of Machine
Learning to bipedal gaits. Yik (a member of the champion 2001 four-legged team) collabo-
rated with Gordon Wyeth of the University of Queensland to evolve a walk for the GuRoo
robot [7], which was entered in the humanoid robot league. This method was inspired by
the gait learning devised for the Aibos by Kim and Uther [15]. For the humanoid, the
same philosophy is applied. Starting from a parameterised gait, an optimisation algorithm
searches for a set of parameter values that satisfies the optimisation criteria. In this case,
the search was performed by a genetic algorithm in simulation. When a solution was found,
it was transferred to the real robot, working successfully. Subsequently, the approach we
used was a hybrid of a planner to suggest a plausible sequence of actions and a numerical
optimisation algorithm to tune the action parameters. Thus, the qualitative reasoning of the
planner provides constraints on the trial-and-error learning, reducing the number of trials
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required [29] [22].

In 2009 Tay developed rUNSWift’s first bipedal walk [24] for the Nao robot. While Tay’s
omni-directional open-loop walk was faster then the manufacturer’s supplied walk at the
time, it could become unstable. Without feedback the robot would fall over.

In 2010 we developed an omni-directional walk for the Nao using closed-loop control in both
the coronal and sagittal planes. The walk was used in competition in 2010 a year in which
rUNSWift was in the final [18].

Research and development on biped learning to walk and balancing continued over the
ensuing years by White [28], Lange [16], Chatfiled [2], Liu [17], and Hengst, et al [12], [11].
Research is ongoing with publications for the 2014 competition walk, and the toe-to-heel
walk as demonstrated in the 2014 rUNSWift Challenge, in preparation.

3 Background

3.1 Walk Basics

Figure 1: Human Body Planes (left). Single and Double Support Walk Phase (right).

A biped is an open kinematic chain consisting of at least two subchains called legs and often
a subchain called the torso. Additional subchains for a humanoid robot include arms and
a head. One or both legs may be in contact with the ground. In the single support phase,
the leg in contact with the ground is called the stance leg, the other the swing leg [27]. One
complete cycle of a bipedal walk can be partitioned into two, usually symmetric, phases.
There are two types of partition: a stance phase, followed by a swing phase; or a single
support phase followed by a double support phase — see Figure 1 (right) and Figure 2. The
three orthogonal human body planes (sagittal, coronal and transverse) are shown in Figure 1
(left).

The center of pressure (CoP) is the point on a body where the total sum of the pressure field
acts, causing a force and no moment about that point. The Zero Moment Point is defined
as that point on the ground at which the net moment of the inertial forces and the gravity
forces has no component along the horizontal axes. When the body is dynamically balanced
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Figure 2: A complete walk cycle showing the stance and swing phase of the right leg in the
sagittal plane [9].

the ZMP and the center of pressure (CoP) coincide. For an unbalanced body, the CoP is at
the edge of the support polygon and the ZMP does not exist (or is a fictitious value outside
the support polygon) [26]. Figure 3 shows ground reaction forces acting on a stance foot and
an equation for calculating the CoP (and ZMP) p.

Figure 3: Center of Pressure and Zero Moment Point for a dynamically balanced foot.

3.2 Related Work

There is a considerable and growing body of literature on robotic locomotion including
bipedalism. Advanced humanoid robots include Honda’s Asimo, Sony’s Qrio, Toyota’s hu-
manoid and the HRP range at AIST. Many of these robots use the ZMP concepts originally
developed by Vukobratovic and Stepanenco in 1972 [26]. Reactive feedback control is inade-
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quate to balance a humanoid and successful application of ZMP control relies on anticipating
the next step and taking control action even before the stance leg leaves the ground. This
type of feed-forward control has been called preview control [14]. Much of the research
on bipedal locomotion relies on variations of an inverted pendulum model. The three link
system in [6], for example, includes a point mass in each of the legs.

Inexpensive small bipedal robots, such as the one used in the RoboCup humanoid kid size
league and the Standard Platform League present their own challenges with the motor fre-
quency response typically low (e.g. 100Hz), and the noise in inertial and foot-sensor mea-
surements high. As the Centre-Of-Mass of these robots is low they fall very quickly.

In 2007 Faber and Behnke presented methods for improving the walking pattern for their
kid-size robot Jupp [5]. The underlying open-loop walk was enhanced with two feedback
mechanisms. They employed a proportional controller to reduce angular velocity in the
sagittal plane and a phase resetting mechanism to switch the walking gait phase using foot-
sensors. Our research using reinforcement learning to adjust the ankle tilt to control sagittal
balance resulted in a similar control policy. We also switch walking phase based solely on
foot-sensor reading, as will be described.

In 2009 several universities had developed their own walks for the Nao. The University
of Leipzig’s Nao-team HTWK is one of the leading teams in the league. They used an
evolutionary algorithms to optimise a closed-loop walk with a reported maximum speed of
32 cm per second in the forward direction. The low vertical actuation of the legs would
often cause the robot to fall over [13]. Developments in 2010 improved on the walks omni-
directional capabilities, but there are no details available [25].

The Northern Bites team from Bowdoin College implemented an omni-directional ZMP
feedback based walk that achieved a stable maximum forward walking speed of 10.5 cm per
second. One notable aspect of this walk is the use of efficient iterative inverse kinematics for
foot placement [23]. Their implementation uses Mathematica to produce symbolic equations
to perform the forward kinematic transforms and final desired joint movements. While we
implemented closed form inverse-kinematic equations for walking forward and sideways, we
largely relied on this technique in 2010 for turning movements because of the complexity of
the hip joint of the Nao.

Dortmund University of Technology developed a closed-loop walk based on ZMP control
[4]. Their “observer-based” controller included integral tracking error, proportional state
feedback and ZMP preview components. This walk was reported to be stable to external
disturbances and able to walk on inclined planes tilted at 6 degrees from horizontal.

University of Bremen’s team B-Human have generated exemplary motions for the Nao [20].
The inverse kinematic transforms are in closed-form made, possible given the constraints
on the Nao’s kinematic chains. The walk is closed-loop and balanced by modifying the
foot-placement of the next step. The parameter settings of the walk are optimised using
a particle swarm algorithm. A smooth transition between different motions is achieved by
interpolation.

The walk developed for the Nao by Team rUNSWift in 2014 proved itself to be competitive
with walks from other league leaders. The implementation of our walk is described next. An
accompanying article is in preparation which describes the research leading to the sagittal
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disturbance rejection. This publication is not an essential perquisite for anyone planning to
implement the UNSW 2014 walk.

4 Motion Architecture

For completeness, we first reproduce the description of the rUNSWift motion architecture
from the 2010 report.

As we are controlling the dynamics of a real robot, it is essential that the motion architecture
runs the highest priority thread to achieve near real-time processing movements at 100 Hz.
This also means that our normal debugging framework cannot be used within motion, as it
might block while writing to the log file.

Figure 4: The motion architecture. Red indicates data flow; black indicates ownership.

Overall control of the Motion thread is provided by the MotionAdapter class. The Motion-
Adapter in turn owns a Touch object, a Generator object and an Effector object. These
divide the Motion cycle into three steps — input, processing, and output. This cycle is
run every ten milliseconds by the ThreadWatcher, which calls the tick function of Motion-
Adapter. Figure 4 provides a summarised outline of the process.

4.1 ActionCommand

The ActionCommand namespace is a collection of data-types that behaviour uses to com-
municate with Motion. There are 3 main types:

5



ActionCommand::Body This contains four walk/kick parameters (forward, left, turn and
power. It also contains an actionType, which is an enumeration of all the possible body
actions. These are also assigned priorities, with higher values indicating priority over
lower values. Of note is the STAND action type. This is a standard pose that is used
to transfer between all other types. It consists of legs with a 60° knee bend and equal
hip and ankle bends of −30°.

ActionCommand::Head This contains two parameters for the head yaw and pitch, as well
as corresponding yawSpeed and pitchSpeed. Finally, it also contains a isRelative flag
that determines whether the yaw and pitch parameters are absolute angles or relative
to the current head position.

ActionCommand::LED This contains two 10-bit fields for the left and right ear LEDs
(there are 10 individual LEDs in each ear). It also contains RGB values for the left and
right eyes (treated as one LED each, even though there are eight separately addressable
LEDs), for the chest LED, and for the foot LEDs. The RGB values are limited to
boolean values for each of the three colours, yielding 7 possible colours in total (plus
an off value).

There is also an ActionCommand::All, which simply is a wrapper around the three main
types to ease programming.

4.2 Touch

Implementations of the Touch interface are expected to retrieve sensor data and button press
data from the underlying subsystem. This is typically from libagent (using the AgentTouch),
but could also be from a simulator, or from another Touch instance (e.g. FilteredTouch, which
filters raw sensor data provided by a child). There is also a special flag, called “standing”,
that tells Motion that stiffness has been enabled, and hence the current action should be
overridden with INITIAL.

In the case of AgentTouch, it waits upon a semaphore shared between it and libagent. When
libagent updates a shared memory block with new values, it also signals the semaphore.
This will wake up libagent, who then copies the data out of shared memory and passes it to
MotionAdapter.

FilteredTouch is merely a decorator around a Touch instance. It simply passes through all
data, except for the Sonar readings, which are filtered (see [18]).

There is also a NullTouch, which returns dummy values, that is useful for testing the runswift
executable off-robot.

4.3 Generator

The Generators are the heart of the Motion system. They take ActionCommands from
behaviour and SensorValues from Touch and generate joint movements to be effected. They
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also regulate the transition between actions, report to behaviour the currently running action,
and maintain odometry for use by localisation.

Most Generators generate joint movements for a walk, kick, or other motion. These are
referred to as “body Generators”. However, there are some special Generators that are used
to control other Generators.

The main one of these is the DistributedGenerator. This has an instance of every body
Generator. It implements the action switching policy. When a different action is requested,
it sends the currently running generator a stop request. When that Generator reports that
it is no longer active, DistributedGenerator switches to the new Generator. This process
can however be overridden by a series of priorities (declared along with the action types),
generally used to implement safety features. For instance, the get-up action has priority and
will immediately kill a walk that is running.

DistributedGenerator also owns a HeadGenerator, which processes Head commands from
behaviour. DistributedGenerator keeps a list of which body Generators use the head as part
of their movement, and which don’t. If the current Generator doesn’t, HeadGenerator’s
output will override the current Generator’s.

There is also a ClippedGenerator, which is used to wrap around DistributedGenerator. It
ensures that joint angles and joint velocities don’t exceed the manufacturer limits. If they
do, they are clipped to the maximal values.

4.4 Effector

Effector classes are required to implement the JointValues specified by MotionAdapter’s
Generator, and also the LED commands coming directly from behaviour.

The predominant Effector is AgentEffector. It writes the data straight to the memory block
shared with libagent, without any changes. This is then processed by libagent during its
next DCM cycle. There is also a NullEffector which, similar to NullTouch, can be used when
developing off-robot.

5 Walk2014Generator

The latest walk is Walk2014. It implements the usual approach of decomposing the walk
phase into sagittal and coronal plane dynamics and then synchronously recombines them.
The kinematics of the walk in open loop aims to keep the torso of the robot upright and
the feet parallel to the assumed flat horizontal ground . The walk is a closed-loop walk with
stabilisation feedback in the coronal plane supplied via the foot sensors, and in the sagittal
plane by a gyrometer.

The walk is omni-directional in that the robot can be directed to simultaneously move
forward, sideways and turn. Naturally the combination of these component vectors must
be within the physical capabilities of the machine and need to be controlled to keep the
robot balanced. Omni-directional foot placement results in a rich variety of movements, for
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example waltzing backwards.

Omni-directional locomotion is achieved by moving the swing foot so that it is replaced on
the ground, rotated, and offset in the forward and left directions relative to the body torso
hip-joint as shown in Appendix A. The next foot position is specified with three variables,
forward, left and turn. Values for these variables represent velocities (in units/second) and
are passed as parameters to the walk generator by higher-level skills and behaviours. The
actual valued used in the walk generator are calibrated to achieve the passed in velocities as
accurately as possible in each individual dimension and converted to meters or radians using
the timing of each walk phase. A combination of parameters may reduce the theoretical
effectiveness of the resultant motion due to stance leg slip on the ground.

For a given forward step-size the walk movement is constrained to move the point on the
robot between the hips at a constant velocity over the ground to minimise the acceleration
of the body sub-chains above, including the torso. This is thought to reduce forces during
the walk cycle, minimise energy usage and oscillatory disturbances. At the same time the
legs are moved to achieve the required omni-directional foot placements. To achieve these
body, leg and foot movements we calculate new joint-angles each 1/100 of a second.

5.1 Inverted Pendulum Dynamics

The walk is designed by first dividing the dynamics into orthogonal (coronal and sagittal
plane) components and recombining the two motions synchronously to generate bipedal
motion. The walk dynamics can be understood by appealing to an inverted pendulum
model of the Nao which we analyse next.

Figure 5: Oscillation in the coronal plane showing the dynamics modelled by inverted
pendulums with their pivot points located on the edges of the feet.

Coronal (or Lateral) Dynamics. Figure 5 shows a coronal view of a stylised Nao with the
whole mass concentrated at the center-of-gravity (CoG), shown as the red dot in the torso.
Each of the flat feet is lifted vertically during the walk, the lift being parameterised by the
two variables foothL and foothR. The idealised robot will only make ground contact with
one of four pivot points in the coronal plane when rocking from side to side. The four points
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correspond to the outside and inside edges of the feet. We therefore model the robot as an
inverted pendulum with its bob at the CoG and the pivot point at one of the feet edges.
As the robot rocks from side to side the pivot point of the pendulum switches depending
on which edge touches the ground. In the figure, the depiction on the right shows the robot
making contact with the inside left-foot.

Figure 6: The gravitational force on the bob of an inverted pendulum has a component in
the perpendicular direction to the rod proportional to the sin of the angle the rod subtends

to the vertical.

The force acting on the bob of an inverted pendulum in its direction of motion is mg sin(θ) as
shown in Figure 6. We start with an idealised system where total momentum, and hence the
magnitude of velocity, is conserved. Each time the pendulum changes pivot we assume the
impact results in a loss of energy which we have simply modelled by reducing the velocity
of the bob by a small fraction. Energy is added to the system implicitly when the feet
push down and lift the robot. We model external disturbances by changing the velocity on
impact by a small random quantity with zero-mean. An example time-series plot for the
center-of-pressure (the blue squarish wave) and a regular sinusoidal foot lifting action (red
wave) for the simple inverted pendulum model of the Nao is shown in Figure 7. The foot-lift
plot shown in red is positive when the left foot is lifted and negative when the right foot is
lifted. The CoG acceleration alternates from left to right by the alternating foot lift action
as the pivot of the pendulum changes from foot to foot.

In the open-loop setting, the timing of the leg lifting action is independent of the state of the
rock. External disturbances without feedback or feedforward can cause the robot to loose
balance and fall over as shown in Figure 7. Here, towards the end, the sinusoidal action
of the feet continues despite the robot being poised on one leg. Our aim is to control the
leg-lift motion to stabilise the rock. We describe this in the Section 5.2, but first discuss the
dynamics in the sagittal plane.

Sagittal Dynamics. The inverted pendulum model for the sagittal plane is shown in
Figure 8. The pivot of the inverted pendulum is again at one of the edges of the feet, this
time either at the front or the back. The forces on the robot are determined by the pivot
edge and the angle of the rod from the pivot to the CoM (θ in the figure). The stance and
swing feet angles to the torso are controlled by the left and right foot forward parameters.

9



Figure 7: The simple inverted pendulum model of the Nao showing an example CoP (blue)
and foot-lift (red) time-series for an open loop walk.

The feet are inclined so as to keep them parallel to the ground plane. For a walk at constant
velocity the CoP should stay between the rear and front edges of the stance foot with the
torso in a vertical position. If the robot sways forward or backward, (α in the figure) we wish
to correct this so that the position and velocity of any sway is zero. A reinforcement learning
controller was developed to achieve this in simulation. The optimal policy was approximated
by making the ankle tilt proportional to the gyroscope Y reading. The details are further
described in a separate report in preparation.

5.2 Feedback Control

Both the coronal and sagittal dynamics of the walk have been stabilised to reduce the
incidence of falling. We next describe both the method and results for the stabilisation of
the walk in both coronal and sagittal planes with the simulator and for the real Nao robot.

Coronal Rock Stabilisation The coronal rock is stabilised by synchronising the onset of
the leg-lift motion with the switch in stance and support foot. We switch the stance and
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Figure 8: The simple inverted pendulum model of the Nao for the sagittal plane.

support feet by observing the zero-crossing of the measured CoP. The CoP is calculated in
the coronal plane with the origin in the middle of the robot between the feet. It is negative
when the robot stands on the right foot and positive when it switches to the left foot. The
period that the robot spends on the stance foot cannot be determined precisely when there
are disturbances such as uneven surfaces, play in motor gears, dirt on the ground, and
bumping by other robots. The zero-crossing point of the CoP indicates that the robot is in
the process of shifting it weight to the other leg. We use it to reset the starting time for both
the left and right swing phases of the walk cycle. The code is reviewed in detail in Section
5.4 item 6.

The CoP and leg-lift time series for the closed-loop coronal rock is show in Figure 9. In
comparison with Figure 7 it can be seen that the motion has a more consistent period with
the onset of the leg-lift action either delayed or brought forward.

The same controller running on the real Nao produces the time-series for the CoP and leg-lift
as shown in Figure 10. It is easy to see the similarity between the results from the simulation
and from real robot, even though the inverted pendulum model is very basic. The real Nao
was tested on a felt carpet which may explain the ragged edges on the CoP measurement
over 8 foot sensors.

Sagittal Stabilisation The real Nao robot is stabilised in the sagittal plane by tilting the
ankle joint in direct proportion to the filtered Gyro Y value. The code is explained in Section
5.4 item 7., and the subject of a separate repot in preparation on machine learning sagittal
stabilisation using reinforcement learning. While the controller implementation is simple,
the theory behind its action is based on a forward controller, akin to preview control, that
angles the stance foot in such a way as to decelerate any sway and bring the robot torso to
move at a constant velocity as dictated by the forward speed setting.
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Figure 9: Simulated closed-loop coronal rock using the CoP zero-crossing point. The time
series show the CoP and the leg-lift actions over time.

Figure 10: Real Nao closed-loop coronal rock using the CoP zero-crossing point.

5.3 Inverse Kinematics

Determination of appropriate joint angles to position the feet requires inverse kinematic
calculations to be performed. Inverse kinematics determines the robot’s joint angles given
the desired 3D position of the kinematic chain end-points such as the feet. Walk2014 uses
two different methods for calculating the joint angles for the walk. A closed-form is used for
moving the foot forward, back or sideways. An iterative method for turning is used which
involves the more complex hip-yaw joint mounted at 45 degrees to the torso in the coronal
plane. We first describe closed-form kinematics, followed by the iterative method.

Close-Form Inverse Kinematics

The stance foot is assumed to be flat on the ground and determines the relative location
of all the other joints for a given set of joint angles. To calculate the joint angles required
for walking, we use a coordinate frame centered on the hip joint. The following Walk2014
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stance variables are sufficient to describe the state of the walk at any point in time:

• the x-position of the ankle joint of each foot in metres in the forward direction relative
to the hip. We use the variables forwardL and forwardR for the left and right foot
respectively. Because the CoM of the robot in the x-direction is located more to the
back of the foot, the robot falls backwards more easily. An innovation in 2014 was to
move the CoM of the robot more towards the middle of the foot to increase the ability
to balance the robot sagittally with its flat feet. The shift of the CoM towards the
middle is determined by the setting of the variable comOffset in the code.

• the lift of the center of each foot above the ground plan in meters directly below the
hip-joint (leghL, leghR).

• The displacement of the foot in the y-direction when stepping sideways (leftL, leftR).

When the turn is zero we can use closed-form inverse kinematics to calculate the hip-pitch,
knee-pitch, and ankle-pitch of each leg and foot. This is possible because of the unique
constraints in Nao’s kinematic leg chains. The hip-pitch, knee-pitch and ankle-pitch motors
axes of rotation are parallel. Each leg therefore moves in a plane. Figure 11 shows a diagram
to visualise the 3D geometry of Nao’s legs. We next detail the derivation of all the joint
angles. The ∗ symbol in the expressions can be substituted by either L or R for the left or
right leg respectively.

We first calculate the vertical distance between ankle and the hip as the hip height above
the ground less the distance the foot is lifted, less ankle height above the ground when the
foot is on the ground: legh∗ = hiph− footh∗ − ankle.

We extend the leg a little further when sidestepping: legX0∗ = legh∗/ cos(left∗).

We include forward∗ and comOffset resulting in the final leg extension:

legX∗ =
√

(legX0∗)2 + (forwardL+ comOffset)2 (1)

Given the final leg extension between the hip-joint and ankle-joint legX∗ we can calculate
the angles beta1∗ and beta2∗, as shown in Figure 11, using the cosine rule to determine the
amount the knee-joint needs to bend.

beta1∗ = arccos (thigh2 + legXL2 − tibia2)/(2 ∗ thigh ∗ legXL) (2)

beta2∗ = arccos (tibia2 + legXL2 − thigh2)/(2 ∗ tibia ∗ legXL) (3)

The final hip-pitch is the sum of the angle due to the knee bend plus the angle required to
move the leg forward as shown in Figure 11. The ankle-pitch is determined similarly to keep
the foot parallel to the ground. The knee-pitch is the sum of the hip and ankle pitch.1

This completes the closed-form inverse kinematic calculations for forward and sideways move-
ment of the legs. We now address the case when there is also a turn component that is
required to change the direction of the robot when walking.

1When the foot displacement is significantly behind the hip so that the thigh slopes backwards, the
calculations need to be adjusted slightly in sign as reflected in the code.
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Figure 11: Geometry of leg position and angles. The * is replaced by either L or R to
signify left or right leg variable in the code.

Iterative Inverse Kinematics when Turning

The hip joints in the Nao are complex in that the hip-pitch, hip-roll and hip-yaw motor
axes coincide. The hip-yaw motors in the Nao are required for turning and are inclined
at 45 degrees to the torso in the coronal plane. In addition, the left and right motors are
constrained to move together by the same amount of rotation — see [19]. This increases the
complexity of the inverse kinematics for foot placement.

Our approach is to determine the new hip-pitch and hip-roll angles that leave the position
of the ankle-joint unchanged relative to the hip-joint for a rotation of the hip-yaw joint. In
this way we can execute a movement of the foot forward and sideways first and subsequently
rotate the foot about its center to complete the omni-directional turn. The knee-pitch is left
unchanged as the leg is one unit. The ankle pitch and roll is calculated to ensure that the
foot is kept parallel to the ground.

We use a similar iterative inverse kinematic method to that used by Bowdoin College in
2009 based on [1]. The idea is to iteratively guess the joint angles and perform a forward
kinematic calculation until we get close enough to the desired position. The “guesses” can
be improved by considering the local effect on the change in position of the action of each
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joint movement. This is given by a matrix of partial derivatives called the Jacobian. In
this way the guesses can be directed and the number of iterations minimised to achieve the
desired final position of the chain. In practice we have found that only three iterations are
necessary.

In particular we use the forward kinematic transform mapping ankle positions into the
hip coordinate frame of reference. The derivation of the mDH parameters for the forward
kinematic transform is given in Appendix B, Appendix D and Figure 18. The Matlab code
for the iterative inverse kinematics is provided in Appendix E and uses Equation 4 (refer
to [1]) to estimate the change in hip-pitch and hip-roll (vector ∆θ).

∆θ = JT (J ∗ JT + λ2I)−1 ∗ e (4)

where J is the Jacobian providing the change in angle with respect to position, λ is a constant
(0.4), and e is the displacement between the current position and the desired position. To
improve processing speed on the Nao Equation 4 was expressed symbolically with Matlab
and the expressions copied into the C++ code.

We still need to determine the ankle pitch and roll to keep the foot parallel to the ground.
Having determined the location of the ankle joint relative the hip joint, we can use the
previous foot-to-hip forward kinematic transform to find the relative position of two points
on the foot that are not collinear with the center point and work out the change in ankle-
pitch and ankle-roll to ensure the foot is parallel to the ground. To minimise computations
we transform two orthogonal unit vectors from the center of the foot along the foot x and y
axes. The ankle angle adjustments are then simply sin−1 δz, where δz is the change in the z
coordinate moving along each of the unit vectors.

This completes the inverse kinematics for one of the legs. The other leg is symmetrical, and
we reuse the co-ordinate transform by simply inverting the sign of the hip-roll and ankle-roll.
We repeat the above iterative inverse kinematic procedure for the other leg to complete the
full inverse kinematic calculations for all leg and foot joints for the omni-directional walk.

5.4 Stepping Through the Code

We enumerate the steps in the overall Walk2014 process following the structure of the
Walk2104Generator.cpp source-code. Variables are described and initialised at the begin-
ning of the source code. The primary method makeJoints sets the values and stiffness of
each of the body joints every 100th of a second. We only document the walk in this report
(not the kicking actions). Item numbers below correspond to comment numbers in the code.

0. The robot stands at different heights depending on whether it is walking or resting. The
first time the Walk2014 generator is called, the stance height of the robot is not known
and is calculated from the sensed bend of its knee joint. In this case the walk2014Option
is still at its initialised value of NONE and under this condition we set the current hip
height hiph.

1. The variable t is used as a timer for each phase of the walk. When the phase terminates t is
reset to zero. When the robot is not in motion t is kept at zero. When t is zero the walk
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is allowed to read in a new set of command values. The values relevant for walking are
forward (meters/sec), left (meters/sec), and turn (radians/sec). The bend parameter
indicates whether there robot should bend its knees or not. With knees straight it can
stand and turn down the stiffness of its motors. With knees bent it can stand, reduce
camera motion blur, but be ready to spring into action quickly. The power parameter
is used to control stiffness of the motors or kick strength. These parameter values
are passed to the Walk2014 generator from Python skills and behaviour components
higher in the task-hierarchy.

1.0 To assist the writing of Python behaviours we introduced a stand and crouch action
command in actioncommand.py in addition to walk that commanded the robot to stand
still with knees straight and bent respectively. This line of code ensures backwards
compatibility with previous behaviour code to set the knee bend. It can be ignored
(and removed) with Python behaviour written in the future.

1.1 We limit forward, left, and turn values individually to maximum and minimum values
in case the behaviour code make demands that are beyond the capability of the robot.
This clipping function does not ensure that a combination of values is within the
capability of the robot, but this is left to behaviour.

1.2 T is the total time set for each walk phase set at 0.23 seconds. When sidestepping it is
increased by up to 0.05 seconds proportionately to take into consideration the longer
recovery time of the inverted pendulum.

1.5 Walk2014 is designed to immediately respond to changes in forward, left, and turn
values at the start of each phase. Very rapid changes in the larger forward values
can cause some robots to become unstable and fall over, for example when going from
full- speed forward at 30cm/sec to full-speed in reverse at -30cm/sec. The make speed
change more gradual we limit the absolute maximum value of the speed change to
FORWARD CHANGE - set to 20 cm/sec. This can be increased or removed altogether
but with a higher risk of falling. This code has been commented out because ratcheting
is now handled in actioncomand.py and adjusted depending on the wear of the robot.

1.6 The commanded forward, left, and turn are velocities that the robot should achieve
while walking. We first convert these velocities to step sizes in meters and radians by
multiplying them by the time period of a walk cycle (2 ∗ T ). The robot slips while
walking. The values are further multiplied by a fraction to scale them to achieve the
commanded velocities in practice.

2. Updates the timers by the duration of the time-step dt = 1/100th of a second.

3. Determine the Walk2014Option or walkState for the next walk phase. A walkState is a
sub-option of a Walk2014Option. The non-kicking Walk2014Options are:

STAND: knees straight and stiffness set to zero to conserve energy

STANDUP: process of moving from WALK crouch to STAND height

CROUCH: process of transitioning from STAND to WALK height

WALK process of walking

16



READY: stand still with knees bent ready to walk

NONE: initial option

walkStates can be WALKING, STARTING, STOPPING, and NOT WALKING.

If a WALK is commanded to stop walking by setting the forward, left, and turn values
to zero, we flag a STOPPING walkState for the next walk phase.

If the walk is commanded to stand with knees not bent (i.e. bend=0), then we
STANDUP, and once we reach the STAND HIP HEIGHT we set the Walk2014Option
to STAND.

Equally if we command the walk to stop walking with knees bent ,we CROUCH until
we are READY.

4. This section of code executes the walk option as determined above.

STAND: The walk parameters are zero. The robot is standing up straight with the
stiffness set to the power parameter, with default stiffness 0.1. This minimum is
required to stop the robot from collapsing given a sight disturbance. STAND is used
by behaviour when the robot is not required to walk and is useful for achieving a steady
and maximum height view, but importantly to reduce the temperature increase of the
motors.

STANDUP: The walk parameters are zero and motor stiffness is set to its maximum
value. The robot stands up from its current hip height hip0 to the STAND HIP HEIGHT.
This motion uses a parabolicStep function that is generated with constant acceleration
followed by constant deceleration to reach a target position. The motion is timed with a
timer to last CROUCH STAND PERIOD. When walking, comOffset moves the CoM
of the robot closer to the center of the foot in the x-direction. The intention is to
allow the robot to better balance with its flat feet. On standing up, the comOffset is
gradually reduced to zero, so that the robot’s weight is over its ankle joint and can be
supported with minimum stiffness. Timer t is kept at zero ready to accept new walk
commands.

CROUCH: Similar to STANDUP except the robot moves to the WALK HIP HEIGHT.
The comOffset is increased again.

WALK: Stiffness is set to 1 (maximum value) while walking.

READY: Similar to STAND, except that the robot is crouched, ready to start walking.
Minimum stiffness is 0.4 to ensure the robot does not collapse at in this stance.

5. This section of the code determines the changing walk variables that parameterise the
walk throughout the walk phases. It is executed whenever walk2014Option = WALK
and the phase time t is non-zero.

5.1 The maximum height to which the swing foot is lifted in the vertical direction is a
base height of 10mm plus two additional components proportional to the size of the
forward and left walk parameters. The locus of the swing foot in the vertical direction
is traced out using motion segments at constant acceleration (i.e. it consists of two
parabolicStep functions described above). The parabolic nature of the position is
derived by integrating the constant velocity twice.
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5.2 Deleted code. It was thought that when walking in an arc the outside foot needs to
travel further than the inside foot and an adjustment to forward would be necessary
for both the swing an stance foot. The ground distance travelled by each foot will vary,
but relative to the body frame no adjustment is necessary. This code has therefore
been deprecated.

5.3L Walk2014 consists of two swing phases without a double support phase, similar to
previous small humanoid gaits [5] [8]. The left and right swing phase code is simi-
lar. We will step through the left swing phase code which is activated when body-
Model.isLeftPhase is true.

5.3.1L forwardL and forwardR are the position of the left and right ankle joints respectively,
relative to the hip in the x-direction. The stance foot position, forwardR , moves
backwards relative to the hip from the position it was in, forwardR0, at the end of the
last walk phase. This motion is at a constant velocity, using the linearStep function
and based on the total distance to travel give the latest commanded forward walk
parameter and the time available to complete the phase, nextFootSwtichT.

5.3.2L Kicking and in particular the left jab kick will be covered in another report.

5.3.3L Walk2014 does not use a sideways lean. This is a placeholder for future use.

5.3.4L When walking sideways we need to determine the position of the feet in the y-
direction at each time-step, i.e. leftR and leftL. With the left food as swing foot, if we
wish to move right, the right stance foot pushes the body right, leftR, as a parabolic
step function of the commanded left command. This is handled by the leftAngle
function. The displacement is only half the commanded left, as the other half will be
symmetrically accounted for by the left leg - the swing foot. The position of the left
foot, leftL, is simply −leftR.

In case of a commanded reversal in sideways direction, the left movement is adjusted
to cancel out any residual swingAngle from the previous left movement. For example
if we reverse the sideways walk from left = −0.1 with the legs apart to left = 0.1 the
robot will not waist time to bring the legs together first.

I few wish to move right when the left foot is the swing foot, the positions are de-
termined in a similar way, except in this case there is no adjustment possible with a
reversal of direction. The only option is to bring the feet together in this phase.

5.3.5L The turn command moves the hip-yaw joint of the robot to effect the turn. We use
an interruptive inverse kinematic calculation to determine all the joints to rotate the
leg and keep the foot parallel to the ground. This is explained in more detail below. In
this part of the code, the amount of turn is controlled by the turn parameter. The walk
recovers any turn left over form the from the previous phase, tunrRL0, and turns the
robot in a parabolic step fashion either with toes pointing together (.33 of the turn)
or apart (.67 of the turn).

5.3.6L The swing foot is set to a height of varFootHeight (see item 5.1). The stance foot
height is zero as it is on the ground.
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5.3R The code is similar to above except with the swing foot the right foot.

5.4 With the walkState == STARTING we are priming the sideways rocking motion from
the READY Walk2014Option. For this priming operation we keep the foot positions
at zero and reduce the height to which the feet are lifted by a factor of 3.5, just enough
to start the sideways rocking motion.

5.5 The arm swing is made proportional to the leg movements in the sagittal plane.

6. This section of code controls the phase change with the interchange of the swing and
support foot. The change is triggered under two conditions:

1. When the centre-of-pressure (CoP) changes sign in the y-direction and the current
walk phase is at least 3/4 of the way through its designated period, T , and

2. If we exceed three times the designate phase period and no change in the sign of
the CoP is detected.

The first condition ensures that we do not react to momentary bounces in the sign of
the CoP as it passes through zero. The second condition tries to rescue a robot that
is stuck on one leg.

If we detect a change in support foot based on the above criteria we set this in the body-
Model to engage the correct kinematic chain, and if the Walk2014Option is WALK we
set several variables that need attention when the support foot changes. We describe
these below:

6.1 The swingAngle which is the angle that the leg has swung during a sideways motion is
stored.

6.2 Decide on the period of the next walk phase and set any walk state. The period,
nextFootSwitchT in Walk2014 is always T . The walk state changes from NOT WALKNG
to STARTING, and from STOPPING to NOT WALKING.

6.3 The phase timer, t is reset to 0.

6.4 Back up previous phase forward and turn values.

7. Sagittal balance is controlled by a filtered Gryo Y value. The ankle pitch is set pro-
portional to this value. The research and explanation behind this approach is the
subject of another report. The effectiveness of this method was born out in practice in
RoboCup 2014 in Bazil, and is consistent with previous work on bipedal locomotion [5].

In the READY Walk2014Option the feedback is turned off to arrest a “hunting”
oscillation evident with some robots in this stance position.

8. This function updates the odometry used by the robot localisation function at 1/100
second intervals. It is noteworthy that the update follows the non-linear parabolic
step functions that move the robot during walk phases. The accumulated values are
calibrated to match the actual speed of the robot, and not the theoretical values.

9. Determine the joint angles from the stance variables using inverse kinematics as described
in Section 5.3.
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10. Sets and returns the joint angles and stiffness, completing the makeJoints method.

5.5 Walk2014 Footstep Response to Change in Walk Parameters

One of the major advances in Walk2014 over the previous walks is that the change in walk
parameter settings takes effect immediately at the start of the next walk phase. There is only
a delay of between 0 and 0.23 seconds from the time the command was given by behaviour.
Previous rUNSWift walks used a ratcheting mechanism that gradually changed the walk
parameters, potentially over several walk cycles, to effect any changes, but see Section 5.4,
item [1.5].

Foot positioning is optimised when changing direction, for example when switching from
walking left to walking right. This means that the Walk2014 does not necessarily transi-
tion through a state where the feet are both together, but may rock with the feet apart
when changing direction. We next illustrate the change in walk variables in response to a
change in walk commands one at a time. In combination they operate in the same manner
independently and concurrently to achieve omni-directional locomotion.
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Figure 12: Basic Walking Pattern showing the phase timing did foot lift heights.

Figure 12 shows the initiation of a walking pattern from the READY state. The blue
sawtooth graph shows the variable t after the walk is initiated. It resets at the beginning
of each phase of the walk when the centre-of-pressure changes sign indicating a change in
support foot. Each phase is of a slightly different duration due to noise in the rocking
behaviour. The red and green parabolic-like plots show the lift in the left and right foot
respectively. The first time a foot is only lifted it is only lifted to about 30% of it walking
height with the effect that it initiates the sideways rocking motion from a standing start.
This also makes the initial phase shorter than the following ones.

Figure 13 illustrates behaviour commanding the walk to turn counterclockwise and then
reverse direction at the same turn speed for several steps. The blue graph shows the value of
the turnRL variable in radians in relation to the foot-steps in green and red from the previous
graph for reference. The turn is not activated until after the sideways rock is initiation. The
outward turn of the feet is greater than the inward turn of the feet (see code item 5.3.5
above). When the direction of turn is changed the hip-yaw joint (turn RL) is not reset to
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Figure 13: Turning counterclockwise and then clockwise.

zero, but maintains the feet apart while the walk changes support foot. At the beginning
the turn motion starts with both feed together and is reset to this position at the conclusion
of the turn.
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Figure 14: Walk forward and then reverse.

Figure 14 shows a walk that first starts to walk forward and then reverses direction and
walk backwards for a few steps. The walk variables forwardL and forwardR are shown in
blue and red respectively, with the left and right foot steps shown in green and purple for
reference. When reversing direction the walk makes a slight adjustment due to ratcheting
the step-size but does not return the feet to a zero position. It is also evident from the graph
that the swing foot moves in a parabolic fashion while the support foot moves at a constant
velocity with respect to the body of the robot. Starting and stopping the forward/backward
motion is smooth and achieved within one phase of the walk.

Figure 15 shows a sideways walk to the left followed by the sideways walk to the right. The
red and blue time-series show left and right leg sideways displacements of the foot. In this
case the timing of the reversal in direction is such that the optimum way to reverse direction
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Figure 15: Walk left and then right.

is bring both feet together for one phase. If on the other foot at the time of reversal, the
walk would pause with legs apart before resuming the walk in the the other direction.
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A Omni-directional Walking Parameterisation

The foot position is parameterised in relation to the hip-joint by forward, left, and turn.
Figure Figure 16 shows how these parameters position a foot.

turn/2	  

forward	  

le/	  

Hip	  joint	  

Figure 16: Omni-directional foot placement

B Kinematic Transforms for Nao Robot

C Kinematic Denavit-Hartenberg convention(D-H)

2 The Denavit-Hartenberg convention is a set of mathematical rules describing the relative
position of coordinate systems for links in a kinematic chain. The proximal DH convention,
also called the modified DH convention is described below. It is this convention that we have
used. There is sometimes confusion because the major part of the robotics literature uses
the so-called distal convention (which is also called standard convention).

For the modified DH convention the axes are chosen according to the following rules:

2This appendix is a reproduction of a section of the notes from [21] with minor editing changes.
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1. The robot consists of n+ 1 links G0, G1, ..., Gn.

2. Links are connected through joints j1, j2, ..., jn, with joint ji connection link Gi−1 and
Gi.

3. For each pair of successive joints ji, ji+1, we can find a common perpendicular li.

4. The zi-axis is chosen to lie along the joint axis of joint i, so zi = ji (and the origin also
lies on ji).

5. The xi-axis is perpendicular to both ji and ji+1 (or equivalently to zi and zi+1) and
points towards the next joint.

6. The yi-axis is chosen such that xi, yi, zi form a right hand system.

7. The origin Oi of frame i is chosen as intersection between li and ji resp. zi.

There are some special cases that are not explained sufficiently through above rules:

• If two joint axes are parallel, the common perpendicular is not defined uniquely — it
is obviously possible to translate the common perpendicular along the direction of the
joint axes. This also means that the origin of the coordinate system can be chosen
arbitrarily, at least in theory. In practice, origins are chosen such that as many DH
parameter as possible are = 0.

• If two joint axes intersect, the direction of the common perpendicular is not unique.
According to Craig [3], it is recommended to choose the direction such that it points
in the same direction as the following x-axis.

• The first coordinate system x0, y0, z0 can be chosen freely. If possible, it is however
chosen such that it coincides with the system z1, x1, y1 if θ1 = 0 resp. d1 = 0 (for
rotational resp. translational joints).

• For the final system xn, yn, zn, the origin of the system (along the joint axis) as well
as the direction of xn can be chosen freely. But again, this is usually done such that
as many parameters of the DH convention as possible are 0.

The meaning of the parameters will now be illustrated by explaining how the corresponding
transformations reflect the transfer between successive coordinate frames:

1. ai is the distance between zi and zi+1 w.r.t. xi, or the distance between joint axes ji
and ji+1 w.r.t. their common perpendicular.

2. αi is the angle between zi and zi+1 w.r.t. clockwise rotation around xi, so the angle
between joint axes ji and ji+1 w.r.t. to their common perpendicular.

3. di is the distance between xi1 and xi w.r.t. zi, so the distance between li−1 and li along
their common joint axis ji.
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4. θi is the angle between xi−1 and xi w.r.t. clockwise rotation around zi, so the angle
between li and li−1.

The parameters are denoted by a0, ..., an−1, α0, ...αn−1, d1...dn, θ1, ..., θn. This is why the
parameters are usually written down as follows:

i ai−1 αi−1 di θi
1 a0 α0 d1 θ1
2 a1 α1 d2 θ2
... ... ... ... ...
... ... ... ... ...

Table 1: Table of modified D-H parameters

The transformation from system ii−1 to system i can now be decomposed into separate
transformations as follows:

1. Translate the system along zi-axis with offset di.

2. Rotate the system around the zi-axis with angle thetai.

3. Translate the system along xi−1-axis with offset ai−1.

4. Rotate the system around the xi−1 with angle αi−1.

Overall, we retrieve the following transformation matrix:

i−1
i T =


cos θi − sin θi 0 αi−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1

 (5)

where the transformation is computed as matrix product of:

i−1
i T = RX(αi−1)DX(αi−1)RZ(θi)DZ(di)

Here RX , RZ are rotations w.r.t. the corresponding z- resp. x-axes, and DX as well as DZ

are translations along those axes.

D Kinematic Chains for Nao

The diagrams show a schematic for all the Nao’s joints and the mDH parameters in the
previous section for three kinematic chains, one from the left-ankle to hip, one from the
bottom-camera to left- foot and the inverse from the left-foot to the bottom-camera. While
the latter two coordinate frame transform matrices are the inverse of each other, we derived
each separately to save calculating the inverse.
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Figure 17: Nao’s joints

Supporting definitions for forward kinematic calculations for chains between foot to bottom
camera:

foot = 45.11 (6)

tibia = 102.74 (7)

thigh = 100.00 (8)

hip = 49.79 (9)

hip offsetZ = 84.79 (10)

neck offsetZ = 126.50 (11)

trunk length = hip offsetZ + neck offsetZ (12)

camera out = 48.80 (13)

camera up = 23.81 (14)

d1 = sqrt(camera out2 + camera up2) (15)

d2 = trunk length− hip (16)

d3 = hip ∗ sqrt(2) (17)

a1 = atan(camera up/camera out) + deg2rad(40) (18)

a2 = atan(camera up/camera out) + pi/2 (19)

l10 = d1 ∗ sin(a1) (20)

d11 = d1 ∗ cos(a1) (21)

a3 = deg2rad(40) − pi (22)

(23)
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Figure 18: mDH parameters transforming the coordinate frame of the left-ankle to the
left-hip
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Figure 19: mDH parameters transforming the coordinate frame of the bottom-camera to
the left-foot
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Figure 20: mDH parameters transforming the coordinate frame of the left-foot to the
bottom-camera
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E Inverse Kinematic Matlab Code

% Objective is to keep ankle position after rotating hip yaw -pitch

% Inverse Kinematics mDH ankle to body with an iterative method

clear all;

clc;

% Dimensions of the Nao in mm (from Aldebaran documentation )

foot_height = 45.11;

tibia = 102.74;

thigh = 100.00;

hip_offsetY = -49.79;

hip_offsetZ = 84.79;

neck_offsetZ = 126.50;

trunk_length = hip_offsetZ + neck_offsetZ;

syms Hr Hp Hyp Kp x y z

% Forward Kinematic transform from body to ankle

% mDH a alpha d theta

DHparams = [ 0 pi/4 0 Hyp;

0 pi/4 0 pi/2+Hp;

0 pi/2 0 pi+Hr;

thigh -pi/2 0 -pi/2+Kp;

0 pi/2 -tibia 0 ];

M = FKchain(1,5, DHparams); % symbolic forward chain

F = M*[0; 0; 0; 1]; % symbolic ankle position in body coords

V = [Hp Hr];

Js = jacobian(F,V);

Hyp = 0.0; Hp = .1; Hr = .2; Kp = 0.3; %example starting values

% Evaluate body coords for Hyp , Hp , Hr. Kp at start (target t)

t = subs(F);

% give turn angle

Hyp = deg2rad (45);

for i = 1:3;

% Evaluate latest s

s = subs(F);

% Evaluate J at s

J = subs(Js);

% desired change in position for x,y,z

e = t - s;

% change in angles required to move towards target

lambda = .4; % 0.4; % follow Northern Bites

Jt = transpose(J);

dA = Jt/(J*Jt+lambda ^2*eye(4,4))*e;

%

% apply dA to test solution to see if it is the same as t

Hp = Hp + dA(1)

Hr = Hr + dA(2)

end
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Rieskamp, André Schreck, Ingo Sieverdingbeck, and Jan-Hendrik Worch. B-human team
report and code release 2009. http://www.b-human.de/index.php?s=publications, 2009.

[21] Oliver Ruepp. Recapitulation of dh convention. http://www6.in.tum.de/ ruep-
p/robotik0910/dh.pdf.

[22] Claude Sammut and Tak Fai Yik. Multistrategy learning for robot behaviours. In
Advances in Machine Learning I, volume Volume 262/2010 of Studies in Computational
Intelligence, pages 457–476. Springer Berlin / Heidelberg, 2010.

[23] Johannes Strom, George Slavov, and Eric Chown. Omnidirectional walking using zmp
and preview control for the nao humanoid robot. In RoboCup, pages 378–389, 2009.

32



[24] Aaron James Soon Beng Tay. Walking nao omnidirectional bipedal locomotion. In
UNSW SPL team report., 2009.

[25] Rico Tilgner, Thomas Reinhardt, Daniel Borkmann, Tobias Kalbitz, Stefan Seering,
Robert Fritzsche, Christoph Vitz, Sandra Unger, Samuel Eckermann, Hannah Müller,
Manuel Bellersen, Martin Engel, and Michael Wünsch. Team research report 2011.
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