
rUNSWift 2012 Inverse Kinematics, the Build System, and the

Python Bridge.

Carl Chatfield (z3255311)
Bachelor of Computer Science

Supervisor: Bernhard Hengst
Assessor: Maurice Pagnucco

October 24, 2012

School of Computer Science & Engineering
University of New South Wales

Sydney 2052, Australia

Abstract

This report covers three parts of the rUNSWift infrastructure: a solution to the inverse kinematic
problem on the Aldebaran Nao, implementation details of our Python bridge used for developing
high level behaviours, and instructions for setting up an environment suitable for cross compiling
gentoo packages for the Nao. The chapters covering the inverse kinematics and Python bridge
are accompanied by some rudimentary benchmarks comparing their execution time against other
implementations. The inverse kinematics section also contains an analysis of the accuracy of our
solution. The last section is purely technical.

Contents

1 Introduction 1

2 Closed Form Inverse Kinematics 2

2.1 Background . 2

2.2 Considerations . 2

2.3 Previous Works . 4

2.4 Nao Leg Kinematic Chain Overview . 5

2.5 Closed Form Solution . 5

2.5.1 Subtraction of foot bone . 7

2.5.2 Restricted xz-planar Motion . 7

2.5.3 Introducing Hip Roll . 8

2.5.4 Introducing Hip Yaw . 8

2.5.5 Calculating Ankle Pitch and Roll . 9

2.5.6 Notes on Source Code Implementation . 10

2.6 Analysis . 11

2.6.1 Yaw Error . 11

2.6.1.1 Compensation . 11

2.6.2 Positional Error . 16

2.6.2.1 Convergence of iterative method . 16

2.6.3 Speed Comparison . 16

3 Python Bridge 19

3.1 Organisation . 19

3.2 Converters . 19

3.3 Wrappers . 20

3.4 The robot Module . 20

3.5 Interpreter initialisation . 21

i

3.6 Behaviour Invocation . 21

3.7 Error handling . 21

3.8 Performance . 21

4 Cross Compiling Packages 24

4.1 Installation . 24

4.1.1 Base Image . 24

4.1.2 Entering the chroot . 25

4.2 Building Packages . 25

4.2.1 Finding Outdated Source Code . 25

4.2.2 Modifying Portage Packages . 25

4.2.3 OpenGL . 26

4.2.4 Valgrind . 27

4.3 Packaging . 27

4.3.1 Dependency Management . 27

4.3.2 Installation and Uninstallation . 27

4.3.3 Issues with eselect . 27

4.3.4 OpenGL . 28

4.3.5 Generating Qt headers . 28

4.3.6 Python 2 . 28

5 Conclusions 29

A Graphs 30

A.1 Iterative Method Error Convergence . 30

A.2 Yaw Error Fitted Surfaces . 35

B Source Listings 39

B.1 IKinematics.cpp . 39

B.2 make package . 41

ii

Chapter 1

Introduction

The 2012 Robocup Standard Platform League competition was the first to incorporate the Alde-
baran Nao v4 robot, a model which differed significantly from its predecessors. Whilst the upgrade
brought with it many advantages, including increased processing power and better cameras, taking
advantage of these changes required significant adaptations of existing rUNSWift infrastructure.

The Nao runs a specialised flavour of GNU/Linux, opennao, distributed by Aldebaran. Versions
of opennao distributed for previous generations of the Nao where based on open embedded, a
distribution of GNU/Linux specifically designed for embedded systems. However, beginning with
the Nao v4, Aldebaran made the decision to move to a Gentoo based version of opennao citing the
need to simplify the process for end users to build third party software packages. The rUNSWift
team relies heavily on software packages not included in the opennao distribution that we must
build ourselves, but process for setting up an environment suitable for building these packages
proved complex. This report documents the process in a step by step fashion for others wishing to
create a similar environment.

From the experience of past teams we were also aware of some deficiencies in the existing infras-
tructure, and the reworking of low level code gave us the opportunity to rectify these. One issue
noticed by the previous team was the unacceptable performance overhead of our python bridge that
allows high level behaviours, written in python, to communicate with the underlying C code. We
have since substituted the previous bridge that was automatically was generated by SWIG with
a hand maintained bridge written using boost::python. We also provide some benchmarks that
compare the overheads of the two bridges in this real life use case.

Another awry section of our code was the inverse kinematics computations. We recognise that a
robust bipedal walk on the Aldebaran Nao will be key to our performance in future competitions,
and inverse kinematics is a requirement for walk development. However, the iterative solution used
until now was not well understood by the team. The convergence and speed of this method has
now been well analysed, but we have also moved to and analysed a closed form solution that is
both faster and guaranteed to be exact.

Keeping these three areas of infrastructure current, whilst not particularly novel, are key to main-
taining the competitiveness of our system.

1

Chapter 2

Closed Form Inverse Kinematics

2.1 Background

In 2012 there was much interest in developing a new walk model based on a linear inverted pendu-
lum. In such a model, the body sways back and forth as would a normal inverted pendulum, except
that hip height is held constant throughout the walk gait. This is achieved by modifying the length
of the inverted pendulum, i.e. the extension of the leg, according to function of the pendulum’s
incline. Doing so requires precise inverse kinematics.

The previous iterative method of solving inverse kinematics on the Nao was not well understood by
the team and was accessed through an awkward interface. Instead of specifying a target position
and orientation, the value of the hip yaw and knee joints were specified, along with a target forward
and sideways translation. The inverse kinematics then calculated the remaining joints such that
the foot arrived at the target flat to the ground. Keeping the foot positioned according to the
inverse pendulum model would have required pre-computing the knee joint such that the extension
was correct.

Speed is another shortcoming of the iterative method. The closed form calculations are nearly an
order of magnitude faster than the previous implementation, despite the code for the closed form
not being nearly as optimised. Analysis shows that the previous implementation may have been
over conservative by performing a more than required number of iterations and hence unnecessarily
slow, however this analysis was not available to the previous teams.

The replacement closed form implementation aims to be fast whilst providing a simpler interface.
The replacement also allows the foot’s target roll and pitch to be specified in addition to the yaw.

2.2 Considerations

Any unambiguous definition of a target in 3-dimensional space must contain at least 6 parameters.
For example, we use a 3-dimensional position vector plus three Euler angles, roll, pitch and yaw.
This means that for any kinematic chain to reach an arbitrary target it must contain at least 6
degrees of freedom.

A degree of freedom is defined as an independent parameter defining the configuration of a system;
in a kinematic chain one can think about these in terms of reachable targets. Each joint in the
kinematic chain adds a degree of freedom if, assuming all joints are optimally placed, its addition

2

increases the range of reachable targets. Because the range of reachable targets increases, the
introduced joint must have added a parameter to the system that is independent of all others.
Optimally placed means that moving the joint somewhere else in the chain whilst maintaining the
total chain length cannot increase the range of reachable targets.

Figure 2.1: An optimally placed joint (left) at the chain origin allows the foot to reach a large
circle of targets. A suboptimal placement (right) in the middle of the chain results in a smaller

range of possible targets.

For example, if operating in 2 dimensions a single link chain of unit length and no joints has one
possible target relative to the origin. Adding a joint at the origin allows a circle of targets at unit
distance to be reached from the origin at a single orientation. Adding a joint at the end of the
chain will allow the same targets to be reached but at any orientation. Finally, a joint half way
along the chain will allow any target within the unit circle to be reached at any orientation. Each
joint increased the range of reachable targets and therefore contributed a degree of freedom.

Figure 2.2: Progression of reachable targets as joints are added to the chain.

A target definition in two dimensions requires only 3 parameters, a two dimensional position vector
plus an angle. Therefore, adding more joints to the chain cannot increase the number of free
parameters.

The leg of the Aldebaran Nao has 6 joints and hence the required number of freedoms to reach
an arbitrary target, and the joint placements are almost optimal. The upper and lower leg links
are not exactly equal, so the range of possible targets could be slightly increased by moving the
knee joint such that they are equal. The ankle joints would also be moved to the tip of the chain
eliminating the third foot link entirely.

3

Assuming optimality however, it is also clear that each joint in the leg chain increases the range of
reachable targets. Any two of the hip joints plus the knee joint allow the chain to reach any point
in the sphere around the hip of radius equal to the total length of the leg. The remaining three
joints each parameterise the orientation of the foot.

The range of targets reachable by the foot of the actual robot is a 6-dimensional space and somewhat
difficult to visualise, but if we consider a 3-dimensional slice where all orientations are reachable,
the reachable space will be be a hollow sphere of radius the length of the chain minus twice the
foot. The radius of the hollow inside the sphere is the length of the foot. The reasoning is that
the hollow sphere is obtained by taking the sphere of targets reachable by the ankle, and then
subtracting all points within foot length of the sphere’s surface and origin. This is not formally
derived here. If assumed to be correct however, it follows that for every target within the hollow
sphere a solution exists for the leg joints such that chain arrives at the target with an arbitrary
orientation. In practice, the range of reachable targets is also restricted by the rotation limits of
the joints.

|chain| - 2|foot| |foot|

Figure 2.3: A two dimensional cross section of the reachable sphere where all orientations are
reachable.

However, the first joint in the chain, the hip yaw joint, is common to both legs. The chain from the
left foot to the right therefore effectively has 11 degrees of freedom, making reaching two arbitrarily
defined targets for both feet impossible even if both targets fall within the above range. We must
therefore allow error in the solution. This error is allowed to manifest in the target yaw as the foot
will remain flat to the target regardless of the error.

2.3 Previous Works

The previous iterative implementation used by rUNSWift was inspired by the method described in
the 2008 Northern Bites team report [5], which itself is based on a paper from UC San Diego [3].
It works by computing the gradient of steepest descent in the error function and then iteratively
moving towards a solution. The analysis in section 2.6 provides detailed graphs showing the conver-
gence of this iterative processes. However, the 2009 Northern Bites [6] report notes that they have
since moved to a closed form solution provided by UPennalizers. The UPennalizers team reports
make mention of inverse kinematics however do not describe their implementation [2].

4

BHuman, the victors of the 2009, 2010 and 2011 competition, published a closed form solution in
their 2009 team report [7]. This solution computes the leg chain twice for a given target. The first
computation exactly computes all joints for each leg chain. However, as mentioned the hip yaw
joint is common to both legs and the hip rotation in each leg’s solution must be equal. However,
when calculating the chains individually there is no guarantee this will be the case. In the second
computation, the hip yaw from each solution is averaged together and each chain recalculated with
the hip yaw fixed at this average. As noted in the considerations section 2.2, this restriction may
introduce error into the target foot yaw. In their report, BHuman refer to this error in terms of a
virtual foot yaw joint that, if present, would compensate for the introduced error.

As inverse kinematics is fundamental to any walk gait development, it is likely that other teams
implement variations of both closed form and iterative solutions.

2.4 Nao Leg Kinematic Chain Overview

Six joints comprise each leg chain, namely the hip yaw, hip roll, hip pitch, knee pitch, ankle roll
and ankle pitch. To compute the position of the foot using rotational and translational matrices,
the rotations must be applied in the order they are listed above. The three links in the chain will
be referred to thigh, shin and foot.

The hip yaw, roll and pitch joints are situated such that they all rotate about axes that intersect
at a single point, greatly simplifying the calculations. The same is true for the ankle roll and pitch
joints. Roll joints move the foot along the coronal (yz-plane), and pitch joints move the foot along
the sagittal plane (the xz-plane). These two classes of joints operate along orthogonal planes. The
hip yaw joint is oriented at 45 degrees on the coronal plane, pointing outwards from the torso. Its
rotation affects not only the foot’s yaw, but also the foot’s roll and pitch.

Customarily, angles about an axis are wound counter clockwise around a positive vector, i.e. use a
right hand winding rule. If considering the Nao’s left leg and assuming no hip yaw rotation, then
the roll and pitch joints rotate about a positive unit vector along the x and y axes respectively.
The hip yaw rotates the rest of the chain about a unit vector pointing outwards from the torso at
a 45 degree decline. A zero radian rotation about each joint results in the Nao standing directly
upright. This zero angle acts as the frame of reference for all other angles.

2.5 Closed Form Solution

The closed form solution is computed in five stages.

Subtraction of foot bone
Because the target position and orientation of the foot is known in advance, the foot bone can
be subtracted from the foot target to produce an intermediate target for the ankle. The chain
from the hip to the ankle only contains two bones, making the calculations much simpler.

Coordinate system rotation about the hip yaw joint
In the absence of hip yaw rotation, all pitch joints translate the foot along the x-axis, and all
roll joints translate the foot along the y-axis. If hip yaw is introduced, the movement of the
other joints are no longer aligned to these axes. The coordinate system must be rotated such
that it is realigned.

5

Figure 2.4: Nao leg chains, with Nao
standing facing forward.

Figure 2.5: Positive pitch values move the
leg behind the Nao.

Figure 2.6: Positive hip yaw moves the legs
inwards.

Figure 2.7: Positive roll values move the leg
outwards.

Coordinate system rotation about the hip roll joint
The y component of the ankle target is known, and in the remaining chain to the ankle only
the hip roll joint can translate the ankle along the y-axis. Therefore it is trivial to calculate
the hip roll. Once known, the coordinate system can be again rotated to leave only a two
dimensional problem.

Calculation of pitch joints
The remaining hip and knee pitch values can be calculated using trigonometry.

Ankle roll and pitch computation
Once the ankle is known to arrive at its target, the ankle roll and pitch joints must be
calculated such that the foot has the correct orientation.

The coordinate system rotations each simplify the problem to one that is easier to solve. For the
purpose of explanation, it is easier to first consider cases where hip roll and hip yaw are absent.
The steps will therefore be introduced in reverse order.

6

2.5.1 Subtraction of foot bone

The final orientation of the foot is known at the beginning of the computation, and therefore the
foot bone can be subtracted from the kinematic chain to yield an intermediary target for the ankle.
First, a vector vfoot is calculated which represents the components of the foot bone in 3-dimensional
space. This is then subtracted from foot target tfoot to produce the ankle target tankle.

vfoot = foot ∗

− cos(targetroll) ∗ sin(targetpitch)

sin(targetpitch)

− cos(targetroll) ∗ cos(targetpitch)


tankle = tfoot − vfoot

If the ankle reaches tankle, and all joints in the kinematic chain are computed such that the foot is
in the correct orientation, then the foot too will reach its target, tfoot. All future mentions of the
target, unless explicitly stated otherwise, will refer to the intermediate ankle target. 1

2.5.2 Restricted xz-planar Motion

Allowing motion in only a single plane reduces the problem to two dimensions and makes it solvable
using only basic trigonometry.

Torso

Thigh

Shin

Foot

Target

t
ankle

C
D

B

x

-z

Figure 2.8: Side View of
the Leg.

After removing the foot bone, the remaining chain consists of only the
thigh and shin bones. Along with the target vector tankle, these links
form a triangle with all lengths known and hence the triangle’s angles
can also be computed. Angle B corresponds to the required knee pitch,
and the required hip pitch is simply the sum of angles C and D. The
joints on the robot use the reference system described in section 2.4, and
hence the angles require a simple conversion.

|tankle| =
√
x2targ + z2targ

B = acos(
shin2 − |tankle|2 − thigh2

−2 ∗ thigh ∗ |tankle|
)

C = acos(|tankle|2 −
shin2 − thigh2

−2 ∗ thigh ∗ shin
)

D = acos(
xtarg
h

)

hipPitch = −(C +D)

kneePitch = −(B + π)

The final step is to calculate the ankle pitch such that the foot arrives at the correct orientation.
The process to do so will be described later.

1The observant reader may recall that our solution allows error into the final foot yaw. Fortunately, target yaw is
absent from the equations computing tfoot.

7

2.5.3 Introducing Hip Roll

Hip roll allows the ankle to travel along the y-axis and adds a third dimension to the problem.
However, the y-component can be removed by rotating the initial reference frame about the hip
roll joint to a new frame where the y axis is orthogonal to the target vector. The extent of the
rotation is equal to the required hip roll.

Target

y

-z

Torso

Foot

hipRoll

Thigh and Shin

Figure 2.9: Front View
of the Leg.

As the y component of the ankle target is known, and in the chain to
the ankle only the hip roll can translate the ankle along the y-axis, the
hip roll must be the arctangent of the right angle triangle formed by the
y and z components of the target.

hipRoll = atan2(ytarg,−ztarg)

The target vector is now rotated in the opposite direction, removing the
y component.

t′ankle =

1 0 0
0 cos(−hipRoll) − sin(−hipRoll)
0 sin(−hipRoll) cos(−hipRoll)

 ∗ tankle

Instead of using a costly matrix multiplication, t′ankle can be computed directly using trigonometry.

t′ankle =

 tx
0

tz/ cos(hipRoll)



Using the new target vector as input to the two dimensional solution, the hip and knee pitch joints
can be calculated as before.

2.5.4 Introducing Hip Yaw

The unusual orientation of the hip yaw joint makes calculating the kinematic chain awkward. We
therefore want to perform another coordinate system rotation that realigns the pitch and roll joints
to the x and y axes, but this requires knowing the final hip yaw value in advance.

BHuman [8] provide an exact solution for calculating the kinematic chain for a single foot to a
target, but as mentioned in the considerations section 2.2 the required hip yaw rotation for each
leg may differ. In the BHuman solution, the hip yaw rotation from each chain is averaged together,
and then a second solution for each leg is computed with the hip yaw fixed at this averaged value.
The key is that in the second computation, the final hip yaw rotation is known in advance and
therefore can be compensated for by a change of coordinate system.

8

Computing the chain twice is a substantial overhead. A simpler approach is to assume that the
target foot yaw and hip yaw are equal, and the analysis section 2.6 shows that this is a reasonable
approximation when target x is small. For larger values of x, the error in the foot yaw becomes
substantial. Error does not change substantially with changes to target y or z. We do not currently
compensate for this error, but the analysis section discusses this error in detail. Recall that the
last step of the inverse kinematics calculation is to compute the ankle joints such that the foot is
flat to the target plane; the error only appears in the foot’s orientation on the plane.

As with the hip roll, rotating the coordinate frame appropriately will remove the hip yaw rotation
from the problem. Because the rotation takes place about a 45 degree vector, there is no concise
matrix notation. We instead denote the rotation about the hip yaw axis vector a using angle axis
notation.

hipYaw = target foot yaw

a =

 0√
2/2

−
√

2/2


t′ankle = AngleAxisRotation(-hipYaw,a) ∗ tankle

To convert an angle and axis to a familiar rotation matrix, the below expansion of AngleAxisRotation(θ,a)
can be used. However, it is worth noting that internally our BLAS library, libEigen, uses quater-
nions internally to represent the rotations.

 a2
x(1− cos θ) + cos θ axay(1− cos θ)− az sin θ axaz(1− cos θ) + ay sin θ

ayax(1− cos θ) + az sin θ a2
y(1− cos θ) + cos θ ayaz(1− cos θ)− ax sin θ

azax(1− cos θ)− ay sin θ azay(1− cos θ) + ax sin θ a2
z(1− cos θ) + cos θ


Once the hip rotation has been compensated for the previous joint values can be solved for as
before, this time using t′ankle as input to the equations.

2.5.5 Calculating Ankle Pitch and Roll

The kinematic chain is now divided into two parts, the first contains the previously calculated hip
and knee joints, whilst the second contains the as yet unknown ankle pitch and roll joints. Call
these two chains leg and ankle.

The previous calculations ensure that the ankle at the end of the leg chain arrives at the ankle
target. The orientation of the ankle, represented by the matrix L, can be calculated by multiplying
together all the rotations of the leg chain. We again use angle axis notation.

9

LhipYaw = AngleAxisRotation(hipYaw, (0,
√

2/2,
√

2/2))

LhipRoll = AngleAxisRotation(hipRoll, (1, 0, 0))

LhipPitch = AngleAxisRotation(hipPitch, (0, 1, 0))

LkneePitch = AngleAxisRotation(kneePitch, (0, 1, 0))

L = LhipYaw ∗ LhipRoll ∗ LhipPitch ∗ LkneePitch

Similarly, a matrix T representing the target foot orientation is also calculated by composing the
target Euler angles.

Tpitch = AngleAxisRotation(target pitch, (0, 1, 0))

Troll = AngleAxisRotation(target roll, (1, 0, 0))

Tyaw = AngleAxisRotation(target yaw, (0, 0,−1))

T = Tpitch ∗ Troll ∗ Tyaw

The ankle rotation matrix A must fill the gap in the chain, rotating L to T . In other words it must
satisfy the below matrix equation.

T = L ∗A

Matrix A can be solved for, and the roll and pitch components of the rotation can be separated
out [4] from the matrix. The caveat is that the third Euler angle, yaw, is unaccounted for. As
previously explained, we accept this error in yaw as a consequence of our approximation of the
shared hip joint.

A = L−1 ∗ T
ankleRoll = −asin(A12)

anklePitch = atan2(A02, A22)

error = atan2(A10, A11)

The ankle pitch and roll joints complete the leg chain.

2.5.6 Notes on Source Code Implementation

The source code in appendix B.1 implements our algorithm, however it makes some optimisations.

• The computation of the target rotation matrix does not include the yaw component as it does
not affect the final result.

10

• The foot vector subtracted from the target is derived from the third column of the target
rotation matrix instead of computing it using sines and cosines.

• When computing the ankle pitch and roll, the inverse rotation matrix is calculated by applying
the leg rotations in the opposite directions and reverse order. This is equivalent to applying
the rotations as usual to construct a rotation matrix and then inverting it.

2.6 Analysis

Three inverse kinematics implementations have been analysed for sake of comparison. Our pre-
viously described solution and the solution taken directly from the BHuman source code will be
compared as is.

The previous rUNSWift iterative implementation required modification to be fairly compared. It
calculated the chain in three steps. First the solution was calculated assuming no hip yaw using
closed form equations similar to those presented in section 2.5.2. The hip yaw is then set to a value
specified by the invoker introducing error which is iteratively removed. Finally, the ankle joints are
computed such that the foot is flat to the ground.

The closed form equations from the first stage take as input a desired knee rotation instead of the
3-dimensional target vector used as input to the other two implementations. These equations have
been replaced with ones that accept a target vector and computes the required knee pitch joints.

2.6.1 Yaw Error

All three implementations calculate the ankle joints such that the foot is guaranteed to be flat to
the target. Therefore, error can only appear in the target yaw. All three implementations also
use a predetermined hip yaw and then calculate the rest of the chain. They differ in how they
predetermine the value.

BHuman first solve the kinematic chain exactly for each leg, and then average the two solution’s hip
yaw values together. The rUNSWift implementations, both old and new, require the user to specify
the hip yaw in advance. Whilst in the old implementation this was by design, we acknowledge it
as an error in the solution.

The invoker of the inverse kinematic computation is probably most concerned with error between
the target and actual foot yaw, however to correct for the error in the foot yaw we must first
understand the error in the hip yaw. As can be seen from the two dimensional plots, even when x
and y translation is absent from the target the hip yaw error function is not a simple sinusoid.

Translation along the y or z axis does not drastically affect the error, however translation along
the x axis does. At the extremes of the Nao’s range of motion, the difference between the specified
and required hip yaw can be up to 90 degrees. This difference actually puts the target outside the
Nao’s range of motion, it is only the specified hip yaw that is within range. Fortunately, the actual
error in the foot yaw is only about 45 degrees at the extremes.

2.6.1.1 Compensation

Compensating exactly for the hip yaw error requires calculating it exactly, which is an expensive
overhead. An alternative approach is to try approximate the error. One such empirically found

11

-0.4r

-0.3r

-0.2r

-0.1r

0.0r

0.1r

0.2r

0.3r

0.4r

0.5r

-1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

E
rr

o
r

(r
a
d
ia

n
s)

Target Foot Yaw (radians)

Foot Yaw Error with Zero x and y Translation

(actual yaw) - (target yaw)

-0.5r

-0.4r

-0.3r

-0.2r

-0.1r

0.0r

0.1r

0.2r

0.3r

0.4r

0.5r

-1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

E
rr

o
r

(r
a
d
ia

n
s)

Specifed Hip Yaw (radians)

Hip Yaw Error with Zero x and y Translation

(required yaw) - (specified yaw)

Figure 2.10: Yaw error when the foot is directly below the hip. The left plot shows the error
between the target and actual foot yaw. The right plot shows the error between the hip yaw

specified by our solution and the correct hip yaw required to reach the users target.

-0.5r

-0.4r

-0.3r

-0.2r

-0.1r

0.0r

0.1r

0.2r

0.3r

0.4r

0.5r

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E
rr

o
r

(r
a
d

ia
n
s)

Target y Translation (metres)

Foot Yaw Error with Zero x Fixed z Translation

(actual yaw) - (target yaw)

-0.5r

-0.4r

-0.3r

-0.2r

-0.1r

0.0r

0.1r

0.2r

0.3r

0.4r

0.5r

-0.32 -0.3 -0.28 -0.26 -0.24 -0.22 -0.2 -0.18

E
rr

o
r

(r
a
d

ia
n
s)

Target z Translation (metres)

Foot Yaw Error with Zero x and y Translation

(actual yaw) - (target yaw)

Figure 2.11: Yaw error with respect to y (left) and z (right) translation with target yaw fixed at
45 degrees. 45 degrees is where the error is most prevalent.

12

-0.10m

-0.05m

0.00m

0.05m

0.10m-1.2r
-1.0r

-0.8r
-0.6r

-0.4r
-0.2r

0.0r
0.2r

0.4r
0.6r

0.8r

-0.8r

-0.6r

-0.4r

-0.2r

0.0r

0.2r

0.4r

0.6r

0.8r

Error

Foot Yaw Error over the Nao's Range of Motion

(actual yaw) - (target yaw)

x Target Yaw

Error

-0.15m
-0.10m

-0.05m
0.00m

0.05m
0.10m -1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

-1.5r

-1.0r

-0.5r

0.0r

0.5r

1.0r

1.5r

Error

Hip Yaw Error over the Nao's Range of Motion

(required yaw) - (specified yaw)

x Hip Yaw

Error

Figure 2.12: Yaw error with respect to target yaw and x translation. The top plot shows the error
between the target and actual foot yaw. The bottom plot shows the error between the hip yaw

specified by our solution and the correct hip yaw required to reach the users target.

13

approximation is to multiply the requested hip yaw by 1 + tanh(atan2(x, z)). As the plot shows,
this actually works surprising well when the target yaw is less than zero. A negative rotation is an
outwards rotation of the leg, which is the more common type of action. When the target hip yaw
is greater than zero there is a slight degradation. However, the two trigonometric are in themselves
quite expensive to compute.

Another approach is to fit a polynomial surface to the errors and calculate the required correction
from the surface’s parameters. This is very fast as it requires only a few floating point multiplica-
tions which are much faster than the trigonometric function calls. We attempted to fit polynomial
curves of several degrees to the hip error surface, however we found the fitted surfaces to be some-
what bumpy. This resulted in a solution where monotonically increasing the target yaw is not
guaranteed to monotonically increase the actual foot yaw, which may come as a surprise to the
invoker. See the appendix A.2 for fit surfaces of higher degree polynomials.

At present, neither of these compensations have been incorporated into our solution. The old imple-
mentation also required the invoker to specify the hip yaw directly, so currently our implementation
is compatible. For now there is little motivation to correct the error.

14

-0.15m
-0.10m

-0.05m
0.00m

0.05m
0.10m -1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

-1.5r

-1.0r

-0.5r

0.0r

0.5r

1.0r

1.5r

2.0r

Error

Hip Yaw Error Corrected by (1+tanh(atan2(x,-z)))

Errors
Corrected Errors

x Hip Yaw

Error

-0.15m
-0.10m

-0.05m
0.00m

0.05m
0.10m -1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

-1.5r

-1.0r

-0.5r

0.0r

0.5r

1.0r

1.5r

Error

Hip Yaw Error Corrected by a Quintic Surface

Errors
Corrected Errors

x Hip Yaw

Error

Figure 2.13: Error surface corrected by multiplying the hip yaw by 1 + tanh(atan2(x,−z)) (top)
and subtracting a quintic surface(bottom)

15

2.6.2 Positional Error

Both the BHuman and our closed form kinematics calculates the leg chain such that the foot arrives
at the target position vector exactly. The previous iterative method is not exact, but our analysis
shows that the iterations converge quickly to an acceptable solution.

2.6.2.1 Convergence of iterative method

The major speed bottleneck of the old implementation is the iterative step. The below graphs show
the convergence of the error function, a simple Euclidean distance, over a reasonable portion of the
Nao’s range of motion.

Each individual graph shows the error surface in metres with the hip yaw fixed at a certain
value. The surface is plotted over x and y target translations with x ∈ [−0.1m, 0.1m] and
y ∈ [−0.05m, 0.15m]. The hip joint is located 0.05m left of the torso, so these ranges represent
0.1m forwards, backwards, left and right from the hip. The z translation is fixed at -0.25m which
is a common value. Change in the z translation does not substantially affect the error. Appendix
contains graphs over a wider domain of hip yaw values.

It can be seen that in most cases after 4 iterations the error converges. In fact, in most of the
graphs the 4 iteration and 5 iteration curves cannot be distinguished. The actual implementation
uses 6 iterations which this analysis shows to be very conservative. The 6 iteration curve has been
omitted from the below graphs as it only adds to the noisiness.

2.6.3 Speed Comparison

The running time required for each method was calculated by timing one million computations
with the per process high precision clock. In theory, the exact number of clock cycles can be
computed by multiplying the average run time by the clock frequency of the processor, however it
is acknowledged that this process is not exact. All measurements were taken on the Nao v4.

Implementation µseconds Clock Cycles Speed up

Closed Form 7.695 12312 1.00
Iterative 4 iterations 43.462 69539 5.65
Iterative 6 iterations 50.905 81448 6.62
BHuman 13.399 21438 1.78

Table 2.1: Average run time comparison.

It must be remembered that the BHuman implementation computes each leg chain twice, and this
overhead is reflected in the above table. The iterative method, on the other hand, is substantially
slower.

The inverse kinematics are computed once per cycle, or 100 times per second. Therefore the
iterative solution consumed 0.5% of all CPU time, including CPU time consumed by the operating
system. This is by no means prohibitive, however it does rule out search based motion planners.
These work by searching the leg chain space for a series of valid intermediate states between the
foot’s current and target position, and then committing to one of the intermediate targets. Each
intermediate chain considered by the search must be evaluated, and even 8 evaluations would cause
the iterative method to consume 4% of all CPU time. This is unacceptable. The faster closed form

16

inverse kinematics can make these 8 evaluations in roughly the same time as the iterative solution
makes 1 evaluation, opening the door for such motion planners.

17

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.7 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.4 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.4 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.7 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

Table 2.2: Convergence of the error over successive iterations. Each graph shows the convergence
at a fixed hip yaw value.

18

Chapter 3

Python Bridge

High level rUNSWift behaviours that run above the core infrastructure are implemented using
python 2. The 2010 python bridge was manually implemented using the CPython API; however,
the need to reference count python objects and manually write wrappers for each new piece of
exposed data caused this approach to become finicky and unsustainable. The following 2011 team
automated the wrapping process using SWIG, but unfortunately the generated code introduced
intolerable performance overheads. In 2012 we have moved to boost::python as it provides a
compromise between performance and the verbosity of interface definitions, which are themselves
written in plain C++.

3.1 Organisation

The bridge is divided into two components: wrappers and converters. boost::python is capable
of automatically generating wrappers for all elementary C++ types, and automatic generation
can be extended to non-templated classes using the boost::python API. All wrappers that are
automatically generated in this manner are stored in the wrappers directory.

Certain data types cannot be automatically converted to python due to limitations of either C++ or
boost::python itself. Instead, boost::python exposes an API for adding user defined converters
alongside those automatically generated. These converters are stored in the conversions directory.

3.2 Converters

Converters are static functions that convert C++ types to python objects using the CPython API.
We provide converters for several types defined by libeigen, the library we use for matrix, vector,
and BLAS operations. The matrix and vector types are templated and the internal data arrays are
not exposed, making wrapping difficult. Instead, our converters produce python tuples containing
the original floating point values.

19

struct Point to python
{

stat ic PyObject ∗ convert (const Point &p)
{

return
boost : : python : : i n c r e f (

boost : : python : : make tuple (p . x () , p . y ()) . ptr ()
) ;

}
} ;

Listing 3.1: A simple wrapper around our Point class

We also require a way to convert C style arrays into a python accessible objects. The boost::python
documentation recommends using STL vectors in place of C style arrays, however in our case the
data is statically allocated on a memory mapped shared page. Although possible, controlling where
STL vectors allocate memory is difficult. We also have C style arrays in other parts of the code
that need to be exposed, so we chose to implement our own converter.

The C type system defines an array in terms of both its element type and length, i.e. a int[2],
float[2] and float[3] all require a different converter. C++ templates are used to generate all
array converters from a single piece of code. The resulting PyObject satisfies the python mapping
interface, meaning the underlying elements of the array can be accessed using python’s array[i]

indexing syntax.

3.3 Wrappers

The process of defining wrappers that result in automatically generated interfaces is relatively
straightforward and well documented in the boost::python documentation. The only caveat is
that if an exposed class member is fetched via a converter, an explicit getter function is needed.
Various helper methods for creating these getters exist.

c l a s s <Bal l In fo >(” B a l l I n f o ”)
. d e f r eadon ly (” r r ” , &B a l l I n f o : : r r)
. d e f r e adon ly (” rad iu s ” , &B a l l I n f o : : r ad iu s)
. add property (” imageCoords” , make getter (& B a l l I n f o : : imageCoords ,

r e t u r n v a l u e p o l i c y <r e turn by va lue >()))
. d e f r e adon ly (” v i s ionVar ” , &B a l l I n f o : : v i s ionVar) ;

Listing 3.2: A simple wrapper. Note that imageCoords is fetched via a converter and hence
requires an explicit getter.

3.4 The robot Module

Python accesses the underlying infrastructure via the robot module. This is a C++ module
automatically generated by boost::python and exported into the interpreter’s namespace from
the PythonSkillAdapter. The module itself is defined using the BOOST PYTHON MODULE macro
which generates the special initialisation function initrobot called by the python runtime. During
the initialisation, all converters and wrappers must be registered to boost::python. Because the
wrappers rely on the converters, the converters are registered first.

20

BOOST PYTHON MODULE(robot)
{

r e g i s t e r p y t h o n c o n v e r t e r s () ;

#inc lude ” wrappers /AbsCoord wrap . cpp”
#inc lude ” wrappers /ActionCommand wrap . cpp”
/∗ . . . ∗/

Listing 3.3: The beginning of the robot module definition.

3.5 Interpreter initialisation

The PythonSkill::startPython function is responsible for initialising the interpreter. After the
interpreter is started through the CPython PyInitialize API call, the robot module must be
loaded into context. In most documentation, python modules are compiled into shared objects and
loaded via python import statements. Because we require direct access to the module from the
C++ code, we chose to compile the module into the main executable and must call the initrobot

function explicitly. Finally, we append the directories containing our skills and helpers to python’s
sys.path list. This allows the interpreter to find our code.

3.6 Behaviour Invocation

All information about the current state of the robot is passed to the python behaviours in a single
object called the Blackboard. The behaviour responsible for deciding the robot’s next action is
then invoked from the C++ code. Rather than allowing the python code to directly control the
robot, the C++ side receives back another python object called a BehaviourRequest that describes
the desired action. The C++ code interprets the request and complies accordingly.

3.7 Error handling

All python errors are captured and handled by the C++ code. During our development cycle, the
error handler puts the robot into a safe stand state and waits for the python code on the robot
to be modified. After detecting a modification, the interpreter is restored to a clean state and the
behaviours are restarted. During competition, the handler immediately restarts the behaviours on
exceptions.

3.8 Performance

The experience of the 2011 rUNSWift team was that SWIG was simply too slow on the old Nao
v3 robots. Complex behaviours could take up to 15 milliseconds to run, which is half of the target
tick execution time. With the upgraded processor on the Nao v4, it is possible that the old SWIG
bridge may have been satisfactory; however, as the histogram of behaviour tick execution times
shows boost::python is substantially faster.

The histogram was obtained by porting the 2012 Python skills to be compatible with the automat-
ically generated SWIG interface. The otherwise identical skills were both instrumented for about

21

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Ti
ck

s
Pe

r
B

u
ck

e
t

Tick Execution Time (milliseconds)

SWIG and Boost Python Execution Times

SWIG
Boost Python

Figure 3.1: Histogram of 300 behaviour execution times using both the SWIG and
boost::python python bridges. Results are grouped into 0.5 millisecond buckets; faster execution

times will result in a shift towards the left of the graph.

22

10 seconds with the robot walking up to the ball, locating the goal, and then shooting. From each
set of measurements 300 have been placed into 0.5 millisecond buckets and plotted next to each
other for comparison.

Execution time of each tick is far from a random variable and is highly dependent on the executed
code path. The behaviours are represented as a tree of state machines, and often a state machine
will simply emit a precomputed action. Transitions between states are more costly and involve
some form of pre-computation for later ticks. As an example, on transition into the head scan skill
a series of way points are precomputed. Later ticks simply move the head between the way points.

Because of this variance in execution time, there is no distinct bell curve present in the data sets.
It is clear however that the SWIG execution time is considerably longer. Beyond the 6 millisecond
mark the boost::python tick times level off at about 3 per bucket. These are likely the result of
long running operating system interrupts servicing the hardware.

Our target perception tick time is 30 milliseconds, and with our current utilisation of the new Nao
v4 processor even the longer running SWIG ticks would be unproblematic. Even so future teams
will probably appreciate the extra elbow room.

23

Chapter 4

Cross Compiling Packages

During development rUNSWswift relies on the ability to load the robot’s core functionality into
our debug tool as a shared library. We are thus forced to use the same tool-chain for compiling
code that runs both on and off the robot. However, the standard opennao distribution does not
include all the libraries we require, and therefore we build our own. For debugging memory issues,
we also compile a valgrind binary compatible with the version of libc on the robot.

4.1 Installation

Our build environment resides in a chroot that mirrors the structure of the opennao image installed
on the robots. Anything built inside the chroot is binary compatible with what runs on the robot.

4.1.1 Base Image

Aldebaran provides a modified Gentoo Stage 3 archive that matches what is distributed in the
opennao images. It can be found under the Software/All Downloads/VERSION/NAO OS/NAO OS

Sources/ directory of the password protected http://users.aldebaran-robotics.com/ site. The
archive released March 1, 2011 erroneously includes system directories, however this may have been
fixed. The first step is to extract the archive to a new directory that will become the chroot.
> mkdir gentoo && cd gentoo

> tar -xjvf $IMAGE --exclude ./sys --exclude ./proc --exclude ./dev

The next step is to acquire a portage tree snapshot. Unlike previous iterations of opennao that
where based on an Open Embedded distribution, the Nao v4 is based on Gentoo which uses a rolling
release system managed by a tool called portage. The robots, however, do not update themselves in
accordance to Gentoo’s release cycle and therefore require a static snapshot of the distribution from
the time the image was created. Meta information about the distribution is stored in the portage
tree, and Aldeberan now provides the necessary snapshot under the same downloads directory.
> cd gentoo/usr

> tar -xjvf $PORTAGE
Once this snapshot has been obtained, it should not be updated via emerge --sync and friends.
Doing so would cause the portage tree to become desynchronised from the software included in the
opennao image.

24

4.1.2 Entering the chroot

Before the chroot is ready to be entered, the system directories must mounted inside the chroot.
resolve.conf is also needed.
> cd gentoo && mkdir -p proc dev/pts sys

> mount -t proc none proc

> mount -o bind /dev dev

> mount -o bind /dev/pts dev/pts

> mount -o bind /sys sys

> cp /etc/resolve.conf etc/resolve.conf

The above procedure needs to be run after every reboot, but can be automated via a shell script.

Finally, enter the chroot.
> chroot gentoo /bin/bash

4.2 Building Packages

The chroot environment differs substantially from a vanilla gentoo install, and there are a few
common hurdles that are frequently stumbled upon when trying to build packages. The gentoo
package management is well documented in other places [1] so only problems specific to the Nao
are covered here.

4.2.1 Finding Outdated Source Code

Because the portage snapshot is now over a year old, many of the servers that previously hosted
source code required to build opennao have ceased to do so. One solution is to tell portage to look
in as many places as possible, and this is done by first installing and then using the mirrorselect

tool.
> emerge app-portage/mirrorselect

> mirrorselect -i -o >> /mnt/gentoo/etc/make.conf

You will be prompted to choose from a list of mirrors, and you should select as many as possible.

Even so, it is possible that the source is present on none of the mirrors. In this case, the packages
can often be found via a google search and manually placed into /usr/portage/distfiles. If the
checksums of the files match those stored in the portage tree, portage will not try to re-download
the package. Otherwise, the package Manifest file will need to be updated.

4.2.2 Modifying Portage Packages

Sometimes it is necessary to modify packages before building them. One such example is when the
exact source archive cannot be found, but a similar one will suffice. As a security feature, portage
stores multiple checksums of each package file and verifies that the files fetched match those that
the Gentoo maintainers expected. However, this means that if we modify a package ourselves we
must fix the checksums. Other possible reasons for modifying packages include changing ebuild
scripts and making source modifications.

Checksums are stored in the Manifest file, and it will need to be rebuilt. If only the ebuild script
is modified, simply rebuilding the manifest suffices.

25

> cd /usr/portage/$CATEGORY/$PACKAGE
> ebuild $PACKAGE-$VERSION.ebuild manifest

If a source modification is required, it is best done by making a patch, then placing that patch into
the files directory of the package. The ebuild script will also need to be updated to apply the
patch.
> cd /usr/portage/$CATEGORY/$PACKAGE
> cp my.patch files/

> ebuild $PACKAGE-$VERSION.ebuild manifest

If the distributed source archive must be changed, first delete the line in the Manifest file corre-
sponding with the old entry. Extract the sources, modify them, and then repackage them using
the original archive name. Place the modified archive into the /usr/portage/distfiles directory
and finally update the manifest as above.

4.2.3 OpenGL

We rely on OpenGL for three dimensional rendering in our debug tool. OpenGL is actually just
a specification, and there exist implementations provided by the major graphics hardware vendors
as well as one produced by the Mesa project. Mesa is able to fall back to indirect rendering as
defined by the GLX specification if it cannot initialise a direct rendering context. Indirect rendering
is highly portable and will work with any X server, therefore we use it in our modified opennao
image.

Mesa is an incredibly complicated piece of software supporting a wide range of hardware, and is
unfortunately inherently difficult to configure. In addition, we uncovered an undocumented bug
that will not be fixed due to the age of the Mesa release. The bug pertains to rendering with array
buffers, but can be worked around by disabling the newer gallium driver and falling back to the
old one.

The exact options we pass to the configure script are as follows:
> ./configure

> --disable-debug --prefix=/usr --build=i686-pc-linux-gnu

> --host=i686-pc-linux-gnu --mandir=/usr/share/man

> --infodir=/usr/share/info --datadir=/usr/share

> --sysconfdir=/etc --localstatedir=/var/lib

> --disable-option-checking --with-driver=xlib --disable-glut

> --without-demos --disable-glw --disable-motif --enable-glx-tls

> --disable-gallium --with-state-trackers=glx --disable-gallium-llvm

> --disable-gles2 --disable-gles2 --disable-gles-overlay

> --disable-glx-rts --disable-asm --disable-openvg

The x11-libs/mesa ebuild script will need to be updated to supply these options to configure. Once
mesa has been emerged, if the libGL library installed to /usr/lib/opengl/xorg-x11/lib/ has a
name of the form libGL.so.1.5.xxxxx then the library has been correctly configured. Otherwise,
the name will be of the form libGL.so.1.x.

26

4.2.4 Valgrind

Valgrind is unusually picky about its build environment, however if configured on a i686 machine
with a 2.6 kernel it should build without problem. Otherwise, the configure script must be modified
in two locations.

case ”${host cpu }” in
− i ?86)
+ ∗)

case ”${ ke rne l }” in
− 2 . 6 . ∗)
+ ∗)

We use a patch file to achieve the modification.

4.3 Packaging

The robots do not come with the Gentoo package manager portage installed, nor do they have any
notion of packages. We therefore chose to do our package management within the chroot, and then
repackage the portage packages as simple archives.

4.3.1 Dependency Management

We use a custom shell script to recursively generate package dependencies and then archive and
place the packages into a /packages directory. If a dependency is already present in the packages
directory, the recursion stops. To avoid building packages that are already part of opennao, we also
test if any file from a package is already present in the opennao image. If present, as before the
recursion stops. The below script invocation builds the libmesa package and all its dependencies.
The script itself is listed under B.2.
> bash make package.sh media-libs/mesa-7.10-r1

4.3.2 Installation and Uninstallation

Installation is done by simply extracting the archives to the desired location, probably either to
the root of the robot or to the cross tool chain’s sysroot directory. If a package needs to be
uninstalled, this can be achieved using xargs to remove all files contained in the archive. The
below is an example of installing and uninstalling a package.
> cd $SRC/robocup2012/nao-atom-cross-toolchain-1.12.3/sysroot
> tar -xjf package.tar.bz2

> tar -tf package.tar.bz2 | xargs -L1 rm

4.3.3 Issues with eselect

Gentoo uses eselect to allow multiple versions of packages to be installed simultaneously and
swapped between when needed. A good example is python2 and python3. It works by installing
each package into a private directory and then creating symlinks to the currently selected package.
These symlinks are not included by the packaging mechanism and must be set up manually after
installation. Fortunately, few packages make use of the eselect system and this is generally not a
problem.

27

4.3.4 OpenGL

OpenGL is the only library in our modified opennao image that uses the eselect system. /usr/lib/libGL.so
and /usr/lib/libGL.so.1 must link to /usr/lib/opengl/xorg-x11/lib/libGL.so.1.5.xxxxx.
> cd $INSTALL DIR/usr/lib/

> ln -s /usr/lib/opengl/xorg-x11/lib/libGL.so.1.5.xxxxx libGL.so

> ln -s /usr/lib/opengl/xorg-x11/lib/libGL.so.1.5.xxxxx libGL.so.1

4.3.5 Generating Qt headers

The Qt package does not correctly generate a gentoo specific header file, namely gentoo-qconfig.h.
We generate this manually using the below commands.
> cd $INSTALL DIR/usr/include/qt4/Gentoo/

> rm -f gentoo-qconfig.h

> ls *-*-*-*.h -1 | awk ’{print "#include <Gentoo/" $0 ">"}’ > gentoo-qconfig.h

4.3.6 Python 2

A python package should not be generated by the packaging script, however it is worth noting
that the python headers installed on the robot conflict with those in our chroot. Python is already
present on both the robot and in the cross tool chain, and therefore there is no need to install it.

28

Chapter 5

Conclusions

A well designed and implemented foundation is essential for any platform that allows for the rapid
development and testing of experimental ideas. One observation about our foundation is that lower
level systems seldom change whilst higher level code built atop the foundation tends to change often.
It is therefore important to understand and document the foundations of our system, as these are
the parts that are unlikely to be touched again until a time when the original expertise responsible
for the part has long since left the team. This is perhaps an area for improvement, though rUNSWift
generally does a good job documenting our more experimental features.

Improvements to the infrastructure documented in this report were motivated both by previous
teams’ experiences and changes made by Aldebaran to the Nao v4 robot. In particular, through
conversations with other teams at previous competitions and also through their team reports, we
now know our solution to the inverse kinematic problem and the implementation of our python
bridge to be on par with that of other teams. We have also documented and compared these to
our previous implementations for future teams’ reference.

Whilst these improvements are not necessarily novel, having a well performing implementation of
the foundations is simply a necessity for future development. The documentation and analysis that
now accompanies these areas will be of great assistance if and when a future team must revisit
them.

29

Appendix A

Graphs

A.1 Iterative Method Error Convergence

These graphs show the convergence of the iterative inverse kinematics method at different rotations
about the hip yaw joint. The iterative solution first calculates an initial solution assuming that the
hip yaw rotation is zero, and then iteratively finds a solution with the correct hip yaw. Therefore,
larger hip yaw values will result in more error in the initial solution. To give an indication of how
the method converges across the leg chain’s range of motion, the error surfaces at each iteration
have been plotted as functions of the foot’s target x and y translation. It can be seen that each
successive iteration’s error surface approaches zero as the number of iterations increases.

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -1.1 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -1.0 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

Table A.1: Iterative Error Convergence

Continued on next page

30

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.9 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.8 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.7 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.6 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

Table A.1: Iterative Error Convergence

Continued on next page

31

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.5 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.4 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.3 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.2 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

Table A.1: Iterative Error Convergence

Continued on next page

32

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = -0.1 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.0 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.1 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.2 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

Table A.1: Iterative Error Convergence

Continued on next page

33

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.3 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.4 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.5 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy -0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.6 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

Table A.1: Iterative Error Convergence

Continued on next page

34

-0.05m
0.00m

0.05m
0.10m

0.00m
0.05m

0.10m
0.15m

0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

Error Convergance at HipYaw = 0.7 radians

2 Iterations
3 Iterations
4 Iterations
5 Iterations

xy

A.2 Yaw Error Fitted Surfaces

In our solution there is an error between the foot yaw specified and the actual resulting foot yaw.
This error is plotted in the red on the below graphs. The blue surfaces show the result of fitting a
polynomial to the error and then subtracting it to obtain a corrected surface close to zero. Higher
order polynomials result in corrected surfaces closer to zero.

35

-0.15m
-0.10m

-0.05m
0.00m

0.05m
0.10m -1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

-1.5r

-1.0r

-0.5r

0.0r

0.5r

1.0r

1.5r

Error

Hip Yaw Error Corrected by a Cubic Surface

Errors
Corrected Errors

x Hip Yaw

Error

Figure A.1: Yaw error corrected by a cubic surface.

36

-0.15m
-0.10m

-0.05m
0.00m

0.05m
0.10m -1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

-1.5r

-1.0r

-0.5r

0.0r

0.5r

1.0r

1.5r

Error

Hip Yaw Error Corrected by a Quintic Surface

Errors
Corrected Errors

x Hip Yaw

Error

Figure A.2: Yaw error corrected by a quintic surface.

37

-0.15m
-0.10m

-0.05m
0.00m

0.05m
0.10m -1.2r -1.0r -0.8r -0.6r -0.4r -0.2r 0.0r 0.2r 0.4r 0.6r 0.8r

-1.5r

-1.0r

-0.5r

0.0r

0.5r

1.0r

1.5r

Error

Hip Yaw Error Corrected by a Septic Surface

Errors
Corrected Errors

x Hip Yaw

Error

Figure A.3: Yaw error corrected by a septic surface.

38

Appendix B

Source Listings

B.1 IKinematics.cpp

C code for computing the inverse kinematic chain on the Aldebaran Nao.

#include <cmath>
#include <Eigen /Eigen>

using namespace Eigen ;

stat ic f loat crop (f loat ang le)
{

while (ang le <= −M PI) ang le += 2∗M PI ;
while (ang le > M PI) ang le −= 2∗M PI ;

return ang le ;
}

NaoLegChain NaoSolve (const NaoFootTarget &target , HipYawLock lock)
{

const f loat torsoL = 0 . 0 8 5 ;
const f loat torsoW = 0 . 0 5 ;
const f loat thighL = 0 .1000 0 ;
const f loat shinL = 0 .10 290 ;
const f loat footL = 0 . 04519 ;

NaoLegChain r ;
f loat x , y , z ;

/∗ Remove t r a n s l a t i o n from tor so cen t re to hip j o i n t . ∗/
x = t a r g e t . x ;
y = t a r g e t . y − torsoW ;
z = t a r g e t . z + torsoL ;

/∗ Assume hip yaw i s equa l to t a r g e t f o o t yaw . ∗/
r . hipYaw = t a r g e t . yaw ;

const f loat sx = s i n f (t a r g e t . r o l l) , cx = c o s f (t a r g e t . r o l l) ;
const f loat sy = s i n f (− t a r g e t . p i t ch) , cy = c o s f (t a r g e t . p i t ch) ;
const f loat sz = s i n f (t a r g e t . yaw) , cz = c o s f (t a r g e t . yaw) ;
const f loat cycz = cy∗cz , sxsy = sx∗ sy , cysz = cy∗ sz ;

Matr ix3f targetM ;

39

targetM << cycz + sxsy ∗ sz , cz ∗ sxsy − cysz , cx∗ sy ,
cx∗ sz , cx∗cz , −sx ,

−cz ∗ sy + cysz ∗ sx , cycz ∗ sx + sy∗ sz , cx∗cy ;

/∗ Sub t rac t the f o o t l i n k from the t a r g e t . The f o o t bone i s (0 , 0 , −footL) . ∗/
x += footL ∗ targetM (0 , 2) ;
y += footL ∗ targetM (1 , 2) ;
z += footL ∗ targetM (2 , 2) ;

i f (r . hipYaw != 0 . f) {
Vector3 f v (x , y , z) ;
AngleAxis<f loat> a(−r . hipYaw , Vector3 f (0 , s q r t f (2) /2 , −s q r t f (2) /2)) ;
v = a ∗ v ;
x = v . x () ;
y = v . y () ;
z = v . z () ;

}

r . h ipRo l l = atan2f (y , −z) ;

const f loat z pr ime = z / c o s f (r . h ipRo l l) ;
const f loat h = hypotf (z prime , x) ;

const f loat A = a c o s f ((shinL∗ shinL − h∗h − thighL∗ thighL) / (−2∗ thighL∗h)) ;
const f loat B = a c o s f ((h∗h − thighL∗ thighL − shinL∗ shinL) / (−2∗ thighL∗ shinL)) ;
r . h ipPitch = −(A + as in (x/h)) ;
r . kneePitch = −(B + M PI) ;

const f loat l e gP i t ch = r . h ipPitch + r . kneePitch ;
Matr ix3f toFootInvM = (

AngleAxis<f loat>(− l e gP i t ch , Vector3 f (0 , 1 , 0)) ∗
AngleAxis<f loat>(−r . h ipRol l , Vector3 f (1 , 0 , 0)) ∗
AngleAxis<f loat>(−r . hipYaw , Vector3 f (0 , s q r t f (2) /2 , −s q r t f (2) /2))

) . toRotat ionMatr ix () ;

Matr ix3f footM = toFootInvM ∗ targetM ;

r . ank l eRo l l = −a s i n f (footM (1 , 2)) ;
r . ank lePi tch = atan2f (footM (0 , 2) , footM (2 ,2)) ;

/∗ F ina l l y make sure a l l ang l e s are bound by (−pi , p i] ∗/
r . hipYaw = crop (r . hipYaw) ;
r . h ipRo l l = crop (r . h ipRo l l) ;
r . h ipPitch = crop (r . h ipPitch) ;
r . kneePitch = crop (r . kneePitch) ;
r . ank l eRo l l = crop (r . ank l eRo l l) ;
r . ank lePi tch = crop (r . ank lePi tch) ;

return r ;
}

40

B.2 make package

Shell script for packaging portage packages into an archive for deployment on the robots.

#! / bin /bash
i n r o b o t ()
{

l o c a l f
for f in ‘epm −q l $1 | grep ’ \ .\ (so \ | a \) \ (\ . \ | $ \) ’ ‘ ; do

i f t e s t −f ”/ robot$ f ” ; then
continue

f i
return 1

done
return 0

}
i n packages ()
{

t e s t −f ”/ packages /$1 . tbz2 ”
}
package ()
{

umask 022
mkdir −p / packages / ‘ echo $1 | sed ’ s@ / .∗$@@ ’ ‘
epm −q l $1 | cut −c2− | xargs ta r −c j f / packages /$1 . tbz2
ge t deps $1

}
get deps ()
{

echo ” Fetching deps o f $1 . ”
l o c a l f =‘mktemp ‘
equery −q depgraph − l −U −−depth=1 $1 | cut −f 1 −d ’ ’ > $ f
i f [‘ cat $ f | grep ’ : $ ’ | wc −l ‘ != 1] ; then

echo ” $ f matched more than one package : ”
cat $ f | grep ’ : $ ’
echo ” s p e c i f y ve r s i o n number . ”
rm $ f
return 1

f i
for i in ‘ cat $ f | t a i l −n+3 ‘; do

i f i n packages $ i ; then
echo ” $ i has p r e v i o u s l y been packaged . ”

e l i f i n r o b o t $ i ; then
echo ”Robot has package $ i . ”

else
package $ i

f i
done
rm $ f
return 0

}
i f t e s t $# −ne 1 ; then

echo ”Usage : $0 category /package−ve r s i on ”
e l i f t e s t −z ”$ (l s / robot 2> /dev/ n u l l) ” ; then

echo ”/ robot not mounted . mount −o bind /path/ to / robot / image/ root root ”
else

pushd / ; package $1 ; popd
f i

41

Bibliography

[1] Gentoo handbook. http://www.gentoo.org/doc/en/handbook/.

[2] Jordan Brindzaand Alexandra Leeand Anirudhaand Majumdarand Barry Scharfmanand Anne.
Robocup standard platform league team report 2009, 2009.

[3] Samuel R. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods, 2009.

[4] David Eberly. Euler angle formulas, 1999.

[5] Prof. Eric Chownand Jeremy Fishmanand Johannes Stromand George Slavovand Tucker Her-
mansand Nicholas Dunnand Andrew Lawrenceand John Morrisonand Elise Krob. The northern
bites 2008 standard platform robot team, 2008. http://robocup.bowdoin.edu.

[6] Prof. Eric Chownand Tucker Hermansand Johannes Stromand George Slavovand Jack Mor-
risonand Andrew Lawrenceand Elise Krob. Northern bites 2009 team report, 2009. http:

//robocup.bowdoin.edu.

[7] Thomas Röfer, Tim Laue, Judith Müller, Oliver Bösche, Armin Burchardt, Erik Damrose,
Katharina Gillmann, Colin Graf, Thijs Jeffry de Haas, Alexander Härtl, Andrik Rieskamp,
André Schreck, Ingo Sieverdingbeck, and Jan-Hendrik Worch. B-human team report and code
release 2009, 2009. Only available online: http://www.b-human.de/downloads/bhuman09_

coderelease.pdf.

[8] Thomas Röfer, Tim Laue, Judith Müller, Armin Burchardt, Erik Damrose, Alexander Fabisch,
Fynn Feldpausch, Katharina Gillmann, Colin Graf, Thijs Jeffry de Haas, Alexander Härtl,
Daniel Honsel, Philipp Kastner, Tobias Kastner, Benjamin Markowsky, Michael Mester, Jonas
Peter, Ole Jan Lars Riemann, Martin Ring, Wiebke Sauerland, André Schreck, Ingo Sieverding-
beck, Felix Wenk, and Jan-Hendrik Worch. B-human team report and code release 2010, 2010.
Only available online: http://www.b-human.de/downloads/bhuman10_coderelease.pdf.

42

http://www.gentoo.org/doc/en/handbook/
http://robocup.bowdoin.edu
http://robocup.bowdoin.edu
http://robocup.bowdoin.edu
http://www.b-human.de/downloads/bhuman09_coderelease.pdf
http://www.b-human.de/downloads/bhuman09_coderelease.pdf
http://www.b-human.de/downloads/bhuman10_coderelease.pdf

	Introduction
	Closed Form Inverse Kinematics
	Background
	Considerations
	Previous Works
	Nao Leg Kinematic Chain Overview
	Closed Form Solution
	Subtraction of foot bone
	Restricted xz-planar Motion
	Introducing Hip Roll
	Introducing Hip Yaw
	Calculating Ankle Pitch and Roll
	Notes on Source Code Implementation

	Analysis
	Yaw Error
	Compensation

	Positional Error
	Convergence of iterative method

	Speed Comparison

	Python Bridge
	Organisation
	Converters
	Wrappers
	The robot Module
	Interpreter initialisation
	Behaviour Invocation
	Error handling
	Performance

	Cross Compiling Packages
	Installation
	Base Image
	Entering the chroot

	Building Packages
	Finding Outdated Source Code
	Modifying Portage Packages
	OpenGL
	Valgrind

	Packaging
	Dependency Management
	Installation and Uninstallation
	Issues with eselect
	OpenGL
	Generating Qt headers
	Python 2

	Conclusions
	Graphs
	Iterative Method Error Convergence
	Yaw Error Fitted Surfaces

	Source Listings
	IKinematics.cpp
	make_package

