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Preface

Artificial Intelligence (AI) researchers have for decades worked on building game-playing agents capable of match-
ing wits with the strongest humans in the world, resulting in several success stories for games like chess and checkers.
The success of such systems has been partly due to years of relentless knowledge-engineering effort on behalf of the
program developers, manually adding application-dependent knowledge to their game-playing agents. The various
algorithmic enhancements used are often highly tailored towards the game at hand.

Research into general game playing (GGP) aims at taking this approach to the next level: to build intelligent software
agents that can, given the rules of any game, automatically learn a strategy for playing that game at an expert level
without any human intervention. In contrast to software systems designed to play one specific game, systems capable
of playing arbitrary unseen games cannot be provided with game-specific domain knowledge a priori. Instead, they
must be endowed with high-level abilities to learn strategies and perform abstract reasoning. Successful realization
of such programs poses many interesting research challenges for a wide variety of artificial-intelligence sub-areas
including (but not limited to):

• knowledge representation and reasoning,
• heuristic search and automated planning,
• computational game-theory,
• multi-agent systems,
• machine learning,
• game playing and design,
• artificial general intelligence,
• opponent modeling,
• evaluation and analysis.

These are the proceedings of GIGA’13, the third ever workshop on General Intelligence in Game-Playing Agents
following the inaugural GIGA Workshop at IJCAI’09 in Pasadena (USA) and the follow-up event at IJCAI’11 in
Barcelona (Spain). This workshop series has been established to become the major forum for discussing, presenting
and promoting research on General Game Playing. It is intended to bring together researchers from the above
sub-fields of AI to discuss how best to address the challenges and further advance the state-of-the-art of general
game-playing systems and generic artificial intelligence.

These proceedings contain the 9 papers that have been selected for presentation at this workshop. All submissions
were reviewed by a distinguished international program committee. The accepted papers cover a multitude of topics
such as the fast inference for game descriptions, advanced simulation-based methods, general imperfect-information
game playing, and automated reasoning about games.

For the first time ever, GIGA’13 proudly presents the award for the Best Student-Only Paper, which comes with a
free registration for the presenting author. We congratulate Michael Schofield and Abdallah Saffidine on winning
this inaugural award with their contribution entitled “High Speed Forward Chaining for General Game Playing.”

We thank all the authors for responding to the call for papers with their high quality submissions, and the program
committee members and other reviewers for their valuable feedback and comments. We also thank IJCAI for all
their help and support.

We welcome all our delegates and hope that all will enjoy the workshop and through it find inspiration for continuing
their work on the many facets of General Game Playing!

August 2013 Yngvi Björnsson
Michael Thielscher

GIGA'13 Proceedings 3



Organization

Workshop Chairs

Yngvi Björnsson, Reykjavı́k University, Iceland
Michael Thielscher, The University of New South Wales, Australia

Program Committee

Yngvi Björnsson Reykjavı́k University
Tristan Cazenave Université Paris-Dauphine
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A Legal Player for GDL-II Based on Filtering With Logic Programs∗

Michael Thielscher
School of Computer Science and Engineering

University of New South Wales
Australia

mit@cse.unsw.edu.au

Abstract
Motivated by the problem of build-
ing a basic reasoner for general game
playing with imperfect information, we
address the problem of filtering with
logic programs, whereby an agent up-
dates its incomplete knowledge of a
program by observations. We develop
a filtering method by adapting an ex-
isting backward-chaining and abduc-
tion method for so-called open logic
programs. Experimental results show
that this provides a basic effective
and efficient “legal” player for general
imperfect-information games.

Introduction
A general game-playing (GGP) system is one that can un-
derstand the rules of arbitrary games and use these rules to
play effectively. The annual GGP competition at AAAI has
been established in 2005 to foster research in this area [Gene-
sereth et al., 2005]. While the competition in the past has fo-
cused on games in which players always know the complete
game state, a recent extension [Thielscher, 2011] of the for-
mal game description language GDL also allows the descrip-
tion of general randomized games with imperfect and asym-
metric information [Quenault and Cazenave, 2007].

GDL uses normal logic program clauses to describe the
rules of a game [Genesereth et al., 2005]. For games with
perfect information, standard resolution techniques can be
used to build a basic, so-called legal player that throughout
a game always knows its allowed moves [Love et al., 2006].
Efficient variations exist that use tailored data structures and
algorithms for computing moves in classic GDL [Schkufza
et al., 2008; Waugh, 2009; Kissmann and Edelkamp, 2010;
Saffidine and Cazenave, 2011]. But the generalization to
imperfect-information games raises a fundamentally new rea-
soning challenge even for such a basic player. Comput-
ing with all possible states is practically infeasible except
for very simple games [Parker et al., 2005]. This is why

∗This submission is a slightly extended version of a paper that
has been accepted for AAAI’13.

the only two existing GGP systems described in the litera-
ture for imperfect-information GDL [Edelkamp et al., 2012;
Schofield et al., 2012] use the more practical alternative of
randomly sampling states [Richards and Amir, 2009; Silver
and Veness, 2010]. But in so doing these players reason with
a mere subset of all models, which is logically incorrect.

In this paper we address the problem of building a logi-
cally sound and efficient basic reasoning system for general
imperfect-information games by first isolating and addressing
the problem of filtering with logic programs: Suppose given a
logic program with some hidden facts of which we have only
partial knowledge. Suppose further that some consequences
of this incomplete program can be observed. The question
then is, what other conclusions can we derive from our lim-
ited knowledge plus the observations? This can be seen as
an instance of the general notion of filtering as any process
by which an agent updates its belief according to observa-
tions [Amir and Russell, 2003].

We develop a method for filtering with logic programs un-
der the assumption that incomplete knowledge is represented
by two sets containing, respectively, known and unknown
atoms, in the sense of 3-valued logic [Kleene, 1952]. Adapt-
ing an inference method for abduction in so-called open logic
programs [Bonatti, 2001a; 2001b], we show how a method for
filtering can be obtained by augmenting standard backward-
chaining with the computation of support.

We apply this method for filtering with logic programs
to build a legal player for general game playing with im-
perfect information that, just like its counterpart for perfect-
information games, is based on backward-chaining. We prove
that the reasoner thus obtained is sound. We also show it to
be complete if, as in perfect-information games, the player
can observe all other players’ moves. Experimental results
with all imperfect-information games used at past GGP com-
petitions demonstrate the effectiveness and efficiency of our
method for a legal player to always know its allowed moves in
almost all games. This in fact supports an argument that can
be made for requiring that all games for competitions such
as at AAAI be written so that basic backward-chaining is all
that is needed to derive a player’s legal moves. Interestingly,
the experiments also revealed that in many existing game de-
scriptions players are not given enough information to know
the outcome after termination.

After the following brief summary of GDL, we define the
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problem of filtering with logic programs. We then develop a
filtering method based on backward-chaining and abduction
of support. We apply this to build a basic and logically sound
legal player, present our experimental results, and conclude.

Background: GDL-II
The science of general game playing requires a formal lan-
guage for specifying arbitrary games by a complete set of
rules. The declarative Game Description Language (GDL)
serves this purpose [Genesereth et al., 2005]. It uses the syn-
tax of normal logic programs [Lloyd, 1987] and is character-
ized by these special keywords:

role(R) R is a player
init(F) feature F holds in the initial position
true(F) feature F holds in the current position
legal(R,M) R has move M in the current position
does(R,M) player R does move M
next(F) feature F holds in the next position
terminal the current position is terminal
goal(R,V) player R gets payoff V
distinct(X,Y) terms X,Y are syntactically different

sees(R,P) player R is told P in the next position
random the random player (aka. Nature)

Originally designed for games with complete informa-
tion [Genesereth et al., 2005], GDL has recently been ex-
tended to GDL-II (for: GDL with incomplete/imperfect infor-
mation) by the last two keywords (sees, random) to de-
scribe arbitrary (finite) games with randomized moves and
imperfect information [Thielscher, 2010].
Example 1 (Monty Hall) The GDL-II rules in Fig. 1 formal-
ize a game based on a popular problem where a car prize is
hidden behind one of three doors, a goat behind the others,
and where a candidate is given two chances to pick a door.
The intuition behind the rules is as follows.1 Line 1 intro-
duces the players’ names. Lines 3–4 define the features of
the initial game state. The allowed moves are specified by
the rules for legal: In step 1, Monty Hall decides where to
place the car (lines 6–7) and, simultaneously, the candidate
chooses a door (lines 13–14); in step 2, Monty Hall opens
one of the other doors (lines 8–11) but not the one with a car
behind it; finally, the candidate can either stick to the earlier
choice (noop) or switch (lines 16–17). The candidate’s only
percepts are: the door opened by the host (line 19) and the lo-
cation of the car at the end of the game (line 20). Monty Hall,
on the other hand, sees all moves by the candidate (line 21).
The remaining rules specify the state update (next), the con-
ditions for the game to end (terminal), and the payoff for
the players depending on whether the candidate picked the
right door (goal).

Formal Syntax and Semantics
In order to admit an unambiguous interpretation, GDL-II
game descriptions must obey certain general syntactic restric-
tions. Specifically, a valid game description must be strati-
fied [Apt et al., 1987] and allowed [Lloyd and Topor, 1986].

1For the sake of readability, we write GDL in standard Prolog
syntax instead of the prefix notation used at competitions.

Stratified logic programs are known to admit a specific stan-
dard model [Apt et al., 1987], which equals its unique stable
model [Gelfond and Lifschitz, 1988]. A further syntactic re-
striction ensures that only finitely many positive instances are
true in this model; for details we must refer to [Love et al.,
2006] for space reasons. Finally, the special keywords are to
be used as follows [Thielscher, 2010]:

• role only appears in the head of facts;

• init only appears as head of clauses and does not
depend on any of true, legal, does, next, sees,
terminal, goal;

• true only appears in the body of clauses;

• does only appears in the body of clauses and does not
depend on any of legal, terminal, goal;

• next and sees only appear as head of clauses.

Under these restrictions, any valid GDL-II game descrip-
tion G determines a state transition system as follows.

To begin with, the derivable instances of role(R) define
the players, and the initial state consists in the derivable in-
stances of init(F). In order to determine the legal moves of
a player in any given state, this state has to be encoded first,
using the keyword true: Let S = {f1, . . . , fn} be a state
(i.e., a finite set of ground terms over the signature of G),
then G is extended by the n facts

Strue
def
= { true(f1). . . . true(fn).} (1)

Those instances of legal(R,M) that follow from G ∪ Strue
define all legal moves M for player R in position S.

In the same way, the clauses with terminal and
goal(R,N) in the head define, respectively, termination and
goal values relative to the encoding of a given position.

Determining a position update and the percepts of the play-
ers requires the encoding of both the current position and a
joint move. Specifically, let M denote that players r1, . . . , rk
take moves m1, . . . ,mk, then

Mdoes def
= { does(r1,m1). . . . does(rk,mk). } (2)

All instances of next(F) that follow from G ∪ Mdoes ∪
Strue compose the updated position; likewise, the derivable
instances of sees(R,P) describe what a player perceives
when the given joint move is done in the given position. All
this is summarized below, where “|=” denotes entailment wrt.
the unique stable model of a stratified set of clauses.

Definition 1 The semantics of a valid GDL-II game descrip-
tion G is the state transition system given by
• R = {r : G |= role(r)} (player names);

• s1 = {f : G |= init(f)} (initial state);

• t = {S : G ∪ Strue |= terminal} (terminal states);

• l = {(r,m, S) : G ∪ Strue |= legal(r,m)} (legal moves);

• u(M,S) = {f : G∪Mdoes∪Strue |= next(f)} (update);

• I = {(r,M, S, p) : G ∪ Mdoes ∪ Strue |= sees(r, p)}
(players’ percepts);

• g = {(r, v, S) : G ∪ Strue |= goal(r, v)} (goal values).
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1 role(monty). role(candidate).
2
3 init(closed(1)). init(closed(2)). init(closed(3)).
4 init(step(1)).
5
6 legal(monty,hide_car(D)) :- true(step(1)),
7 true(closed(D)).
8 legal(monty,open_door(D)) :- true(step(2)),
9 true(closed(D)),

10 not true(car(D)),
11 not true(chosen(D)).
12 legal(monty,noop) :- true(step(3)).
13 legal(candidate,choose(D)) :- true(step(1)),
14 true(closed(D)).
15 legal(candidate,noop) :- true(step(2)).
16 legal(candidate,noop) :- true(step(3)).
17 legal(candidate,switch) :- true(step(3)).
18
19 sees(candidate,D) :- does(monty,open_door(D)).
20 sees(candidate,D) :- true(step(3)), true(car(D)).
21 sees(monty,move(R,M)) :- does(R,M).

22 next(car(D)) :- does(monty,hide_car(D)).
23 next(car(D)) :- true(car(D)).
24 next(closed(D)) :- true(closed(D)),
25 not does(monty,open_door(D)).
26 next(chosen(D)) :- does(candidate,choose(D)).
27 next(chosen(D)) :- true(chosen(D)),
28 not does(candidate,switch).
29 next(chosen(D)) :- does(candidate,switch),
30 true(closed(D)),
31 not true(chosen(D)).
32
33 next(step(2)) :- true(step(1)).
34 next(step(3)) :- true(step(2)).
35 next(step(4)) :- true(step(3)).
36
37 terminal :- true(step(4)).
38
39 goal(candidate,100) :- true(chosen(D)), true(car(D)).
40 goal(candidate, 0) :- true(chosen(D)), not true(car(D)).
41 goal(monty, 100) :- true(chosen(D)), not true(car(D)).
42 goal(monty, 0) :- true(chosen(D)), true(card(D)).

Figure 1: A description of the Monty Hall game [Rosenhouse, 2009] adapted from [Schofield et al., 2012].

GDL-II games are played using the following protocol.

1. All players receive the complete game description G.

2. Starting with s1, in each state S each player r ∈ R se-
lects a legal move from {m : l(r,m, S)}. (The prede-
fined role random, if present, chooses a legal move with
uniform probability.)

3. The update function (synchronously) applies the joint
move M to the current position, resulting in the new po-
sition S′ = u(M,S). Furthermore, the roles r receive
their individual percepts {p : I(r,M, S, p)}.

4. This continues until a terminal state is reached, and then
the goal relation determines the result for all players.

Filtering with Logic Programs
The original game protocol for GDL [Love et al., 2006] dif-
fers from the above in that players are automatically informed
about each other’s moves in every round. Since they start
off with complete knowledge of the initial state, knowing
all moves implies that players have complete state knowl-
edge throughout a game because there never is uncertainty
about the facts Strue ∪ Mdoes (c.f. (1), (2)) that together
with the game rules determine everything a player needs to
know about the current state (such as the allowed moves as
the derivable instances of legal(R,M)) and the next one (as
the set of derivable instances of next(F)). The syntactic re-
strictions for valid game descriptions ensure that all necessary
derivations are finite, so that a basic reasoner for GDL can be
built based on standard backward chaining [Genesereth et al.,
2005].

In case of GDL-II, however, the situation is very differ-
ent. Although players also start off with complete knowledge
of the initial state, they are not automatically informed about
each other’s moves. But with only partial knowledge of the
set of facts Mdoes, players can no longer fully determine the
derivable instances of next(F) through standard backward
chaining. This in turn means that players also lack complete
knowledge of the facts Strue in later states, which are needed

to determine the legal moves and other crucial properties such
as termination and goal values.

Rather than getting to see each other’s moves, after ev-
ery round players receive percepts according to the rules for
sees(R,P). In other words, they are informed about certain
consequences that follow from the game rules and the incom-
pletely known facts Strue ∪Mdoes. Building a basic player
for GDL-II that is logically sound therefore requires a method
for reasoning about the consequences of a partially known
logic program and for updating this incomplete knowledge
according to observations being made. Hence, we first isolate
and address the more general problem of filtering with logic
programs.

Definition 2 Consider a normal logic program P and two
sets, B and O, of ground atoms called base relations and
observation relations, respectively. A filter is a function that
maps any given Φ ⊆ 2B andO ⊆ O into a set Filter[O](Φ) ⊆
Φ. A correct filter is one that satisfies 2

Filter[O](Φ) ⊇ {B ∈ Φ : P ∪B |= o for all o ∈ O and
P ∪B 6|= o for all o ∈ O \O}

A filter is complete if these two sets are equal.

In this definition, incomplete knowledge about the base rela-
tions is represented by a set of possible models Φ. A correct
filter retains all models in Φ that entail all observations.

Example 2 Consider the logic program below, with base re-
lations B = {b(1), b(2)} and O = {obs}.

a :- b(X).
obs :- not a.
p :- not a.
q :- a.

Suppose Φ = 2{b(1),b(2)}, that is, nothing is known about the
base relations. If complete, Filter[{obs}](Φ) equals {∅}. It
follows that if obs is observed then, under the only model left
after filtering, p is derivable and q is not.

2The definition applies to any chosen entailment relation “|=.”
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Example 3 Consider the GDL in Fig. 1 with the instances
of true(F) and does(R,M) as base relations. Let Φ be
such that all of true(closed(1)), true(closed(2)),
true(closed(3)), true(chosen(1)), true(step(1)),
does(candidate,noop) are true in all models in Φ, and let
O = {sees(candidate,2),sees(candidate,3)}.

Suppose that we observe O = {sees(candidate,3)},
then does(monty,open(3)) is true in all models result-
ing from a complete filter (cf. line 19 in Fig. 1), while
does(monty,open(2)) is false in each of them. It follows,
for instance, that in all models remaining after filtering,
next(closed(1)) and next(closed(2)) are derivable but
not next(closed(3)) (cf. line 24–25).

A Basic Legal Player for GDL-II
In this section we present a method for constructing a rea-
soner for GDL-II based on a method for filtering that operates
on a compact representation of incomplete information.

Representing Incomplete Information About Facts
Since explicitly maintaining the set of possible states is prac-
tically infeasible in most games, we base our approach to fil-
tering on a coarser but practically feasible encoding using
two sets of ground atoms, B+ ⊆ B and B0 ⊆ B, which
respectively contain the base relations that are known to be
true and those that may be true. Any such pair that satisfies
B+ ∩ B0 = ∅ implicitly represents the set of models

ΦB+,B0
def
= {B+ ∪B : B ⊆ B0} (3)

This representation allows us to base our filtering method on a
derivation mechanism that has been developed in the context
of so-called open logic programs [Bonatti, 2001a].

Reasoning with Open Logic Programs
In the following we adapt some basic definitions and results
from [Bonatti, 2001a; 2001b] to our setting. Our open logic
programs are triples Ω = 〈P,B+,B0〉 where P is a normal
logic program and B+,B0 are as above. A program P ′ is
called an extension3 of Ω if P ′ = P ∪ B+ ∪ B for some
B ⊆ B0. This gives rise to two modes of reasoning:

1. Skeptical inference: Ω |=s ϕ iff all stable models of all
extensions P ′ of Ω entail ϕ.

2. Credulous inference: Ω |=c ϕ iff some stable model of
some extension P ′ of Ω entails ϕ.

As observed in [Bonatti, 2001a], these two methods of infer-
ence are dual to each other: Ω |=s ϕ iff Ω 6|=c notϕ and
Ω |=c ϕ iff Ω 6|=s notϕ. We also make use of the following
concepts [Bonatti, 2001b]:

1. A support for a ground atom A is a query Q obtained by
unfolding A in P ∪ B+ until all the literals in Q either
occur in B0 or are negative.

2. A countersupport for a ground atomA is a set of ground
literals S such that each L ∈ S is the complement of

3This is called a completion in [Bonatti, 2001a], which however
clashes with another concept so named earlier [Shepherdson, 1984].

some literal belonging to a support ofA; and conversely,
each support of A contains a literal whose complement
is in S.

In the following, for a set S of literals we denote by S+ the
set of positive atoms in S and by S− the set of atoms that
occur negated in S. A support is consistent iff S+ ∩ S− = ∅.

A Backward-Chaining Proof Method
The definitions from above form the basis of a backward-
chaining derivation procedure for computing answer substi-
tutions θ along with supports for literals L wrt. an open pro-
gram Ω = 〈P,B+,B0〉 using the following derivation rules.

1. If Lθ ∈ B+, return θ along with support ∅.
2. If Lθ ∈ B0, return θ along with support {Lθ}.
3. If L = ¬A is a negative ground literal and S the set of

computed supports for A, return the empty substitution
along with a consistent set containing the complement
of some literal from each element in S.

4. If L = A is positive and unifiable with the head of a
clause from P , unfold A and return the union, if con-
sistent, of supports for all literals in the resulting query
along with the combined answer substitutions.

Recall, for instance, the short program from Example 2 and
suppose B+ = ∅ and B0 = {b(1), b(2)}. Query b(X) admits
two computed supports: S = {b(1)} with θ = {X \ 1}, and
S = {b(2)} with θ = {X \ 2}. Hence, the computed coun-
tersupport for query a is {¬b(1),¬b(2)}, which in turn is the
(only) support for obs under the given sets B+,B0.

The above derivation rules are a subset of the calculus de-
fined in [Bonatti, 2001a; 2001b] but constitute a complete and
decidable derivation procedure if the underlying logic pro-
gram is syntactically restricted.
Proposition 1 Let Ω = 〈P,B+,B0〉 be an open logic pro-
gram with a finite Herbrand base and stratified program P .

1. Every computed support θ, S for a query Q satisfies
〈P,B+ ∪ S+,B0 \ S−〉 |=s Qθ.

2. If 〈P,B+,B0〉 |=c Qτ for some τ , then there exists a
computed support θ, S forQ with θ more general than τ .

In the following, by Ω `θ,S A we denote that substitution θ
together with some S is a computed support for atom A wrt.
open logic program Ω. In particular, Ω `θ,∅ A means that Aθ
follows without additional support, i.e., is necessarily true in
all extensions and hence skeptically entailed by Ω.

Filtering Based on Backward Chaining
Next, we use the backward chaining-based method for open
logic programs to define a basic method for filtering with
logic programs. In the following, by Supp(Q) we denote the
set of all computed supports for query Q. Consider a normal
logic program P ; sets B+,B0; and a set O ⊆ O of obser-
vations. We compute Filter[O](ΦB+,B0) as two sets B+new and
B0new as follows.

B+new = B+ ∪

⋃
o∈O

⋂
S∈Supp(o)

S+ ∪
⋃

o∈O\O

⋂
S∈Supp(¬o)

S+


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B0new = (B0\B+new)\

⋃
o∈O

⋂
S∈Supp(o)

S− ∪
⋃

o∈O\O

⋂
S∈Supp(¬o)

S−


Put in words, for each observation o made (resp. not made)
we compute all supports (resp. all supports for ¬o) and then
“strengthen” B+,B0 by every literal that is contained in all
supports. More precisely, if a literal occurs positively in every
support for some o (resp. ¬o), then it is added to B+ and
removed from B0. Also removed from B0 are the literals that
occur negatively in every support for some o (resp. ¬o).
Example 4 Recall again the program from Example 2. As
we have seen, when B+ = ∅ and B0 = {b(1), b(2)} then
the query obs has one support, namely, {¬b(1),¬b(2)}. This
yields B+new = ∅ and B0new = ∅. On the other hand, consider
the query ¬obs. It has two supports, {b(1)} and {b(2)}. Their
intersection being empty implies B+new = B+ and B0new = B0,
i.e., nothing new is learned by not seeing obs.

Proposition 2 Under the assumptions of Proposition 1, the
filter defined above is correct.

Proof: By Definition 2 we need to show that B ∈ ΦB+
new,B0

new
if B ∈ ΦB+,B0 and P ∪ B |= o for o ∈ O while P ∪B 6|= o
for o ∈ O \ O. So suppose the latter are all true, then for
each o ∈ O (and each o ∈ O \ O, resp.) there must be a
computed support S ∈ Supp(o) (resp., S ∈ Supp(¬o)) such
that S+ ⊆ B and S− ∩B = ∅. By construction of B+new,B0new
this implies B+new ⊆ B ⊆ B+new∪B0

new. Hence,B ∈ ΦB+
new,B0

new
according to (3). �

Since the compact representation of incomplete knowledge
via (3) does not support reasoning by disjunction, the fil-
ter is necessarily incomplete. Recall, for instance, the sec-
ond case in Example 4. Not observing obs means that b(1)
or b(2) must be true. Hence, model ∅ could be filtered out
but is not because no two sets B+,B0 can encode Φ =
{{b(1)}, {b(2)}, {b(1), b(2)}} via (3).

A Basic Update Method
The method for filtering with logic programs forms the core
of our approach to building a basic reasoner for GDL-II. The
syntactic restrictions for GDL-II ensure that the underlying
open logic program satisfies the conditions Propositions 1
and 2. This will guarantee that the knowledge the player keeps
in B+,B0 is always correct.

The procedure for maintaining the player’s incomplete
knowledge about a state is as follows, where G denotes the
GDL-II description of a game whose semantics is given as
per Definition 1; and where my role ∈ R is the role assigned
to the player.

1. B+ :={true(F)θ : 〈G, ∅, ∅〉 `θ,∅ init(F)}; B0 := ∅
2. In every round,

2.1 Compute the possible legal moves of all other roles:

L :={(R,M)θ : 〈G,B+,B0〉`θ,Slegal(R,M), R 6=my role}

2.2 Let my move be the selected move of the basic
player and my percepts the player’s percepts.
– Let B+ := B+ ∪ {does(my role,my move)}

B0 := B0 ∪ {does(R,M) : (R,M)∈ L}

– Now, let

O := {sees(my role,P)θ :
〈G,B+,B0〉 `θ,S sees(my role,P)}

O := {sees(my role, p) : p ∈ my percepts}

and compute B+new,B0new as the result of filtering
B+,B0 by O wrt. G and O.

– The knowledge about the next state is obtained
as

B+ := {true(F)θ : 〈G,B+new,B0new〉 `θ,∅ next(F)}
B0 := {true(F)θ : 〈G,B+new,B0new〉 `θ,S next(F)}\B+

3. The player knows that the game has terminated in case
〈G,B+,B0〉 `ε,∅ terminal.

Put in words, the player starts with complete information
about the initial state (step 1). In every round, the player’s
knowledge is characterized by the skeptical consequences of
the open logic program consisting of the game rules plus the
incomplete knowledge B+,B0; specifically, this allows us to
determine the player’s own known legal moves as

{Mθ : 〈G,B+,B0〉 `θ,∅ legal(my role,M)}4

The incomplete knowledge also allows us to compute cred-
ulous consequences, in particular the possible legal moves
of all other players (step 2.1). For the update of B+,B0
(step 2.2), we first add to B+ the knowledge of the player’s
own move and to B0 the possible moves by the opponents.
This allows us to determine the range of possible observa-
tions, O, in order then to filter the player’s knowledge by ac-
tual observations O. Finally, the player’s knowledge of the
updated state is determined as the skeptically (for B+) and
credulously (for B0) entailed instances of next(F).

The incompleteness of the filtering implies that the rea-
soner for GDL-II thus defined is incomplete in general. It is,
however, easy to show that it is complete in case the only
sees-rule for a player is

sees(player,move(R,M)) :- does(R,M).

This is so because under this rule the only support for an in-
stance sees(player,move(r,m)) is does(r,m), and the
only countersupport in case the observation is not made is
¬does(r,m). Hence, the filter will add the former to B+ and
remove all of the latter from B0. The update procedure will
then result in complete knowledge whenever the player starts
with complete knowledge.

Experimental Results
Because the representation of incomplete knowledge and the
backward chaining-based filtering are in themselves incom-
plete, we have run experiments to test both the effectiveness
and the efficiency of our method. We have used a simple im-
plementation in the form of a vanilla meta-interpreter in Pro-
log. We have run experiments with all games that were played

4The player knows that it doesn’t know all its legal moves if some
instance legal(my role,M) can be derived only with non-empty
support, i.e., is credulously but not skeptically entailed.
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Game Legal Terminal Goal Time
Backgammon X X X 8.84
Banker/Thief (role 1) X X no 0.42
Banker/Thief (role 2) X X no 0.69
Battleships in Fog no – – –
Battleships in Fog∗ X no no 930.04
Blackjack no – – –
Hidden Connect X X no 4.08
Hold your Course II X X X 2.05
Krieg-Tictactoe 5x5 no – – –
Mastermind448 X X no 0.58
Minesweeper (role 1) X X X 1.56
Minesweeper (role 2) X no no 199.82
Numberguessing X X no 1.53
Monty Hall (role 1) X X X 0.21
Monty Hall (role 2) X X X 0.21
Small Dominion 2 X X X 12376.75
Transit (role 1) X no no 4.18
Transit (role 2) X no no 5.76
vis Pacman (role 1,2) X no no (706.45)
vis Pacman (role 3) X no X 32.12

Table 1: Experimental results testing the basic player’s ability
to always know its legal moves, whether a game has termi-
nated, and what its own goal value is in the end.

at past general game playing competitions with imperfect-
information track.5 We ran 1000 simulated random matches
each to test whether the legal player always knew its legal
moves, and also—in case it did—whether it had sufficient
knowledge to know at the end that the game must have ter-
minated and to derive its own goal value.

The results are summarized in Table 1. For games with
two or more non-random roles that are not symmetric, we
have run the basic player for each of them as shown. The
times given are the average time, in seconds (cpu time), that
the player took for 1000 rounds of updating its incomplete
state knowledge on a desktop computer with a 2.66 GHz CPU
and 8GB memory running Eclipse Prolog. Overall, the results
demonstrate both the effectiveness and the efficiency of our
basic backward-chaining method.

Knowledge of Legal Moves The experiments showed that
the basic player always knows its legal moves in almost all of
the games. An exception is Krieg-Tictactoe, where the uncer-
tainty about the legal moves is due to the rule below.

legal(P,mark(M,N)) :-
role(P), true(cell(M,N,C)), distinct(C,P).

This rule says that a player P may attempt to mark any
cell that is not already marked with his own symbol. From
a game-theoretic point of view this rule is correct, be-
cause players always knows all cells occupied with their

5The 1st German Open 2011, see http://fai.cs.uni-
saarland.de/kissmann/ggp/go-ggp; and the 1st Aus-
tralian Open 2012, see https://wiki.cse.unsw.edu.au/
ai2012/GGP

own symbol, that is, for which true(cell(M,N,P))
holds. Hence, they also know which cells they have not
yet marked, that is, for which true(cell(M,N,b)) or
true(cell(M,N,Q)) holds, with Q denoting the oppo-
nent of P. So in principle they can always determine their
legal moves. But the basic player does not know which
of the other cells are blank and which have been marked
by the opponent. Lacking the ability to reason disjunc-
tively means that in this case there is no ground instance of
true(cell(M,N,C)) that is known to satisfy the body of
the rule from above.

For a similar reason, the basic player fails to determine its
legal moves in Blackjack. In the original version of Battle-
ships in Fog, the reason why the player is uncertain about its
legal moves lies in these (slightly simplified) rules:

sees(admiral,position(admiral,A,B)) :-
does(random,setup(A,B,C,D)).

sees(commodore,position(commodore,C,D)) :-
does(random,setup(A,B,C,D)).

next(position(admiral,A,B)) :-
does(random,setup(A,B,C,D)).

next(position(commodore,C,D)) :-
does(random,setup(A,B,C,D)).

Here, in a single random move two ships get positioned,
one for each player. Despite the given information, how-
ever, the legal player is unable to determine the location
of its own ship because the observation of some argu-
ments of setup(A,B,C,D) does not entail a fully known
instance of this move, and hence nothing can be learnt
from filtering through an observation like, for example,
sees(admiral,position(admiral,1,2)). For the
sake of experimentation, we have defined a variant of the
original game (marked by ∗ in Table 1) where the random
move is broken into two moves. With this simple modifi-
cation, the basic player is able to determine its legal moves
throughout that game.

Knowledge of Termination and Goal Values Somehow
surprisingly, in a number of games the legal player was not
able to derive that a game has terminated and what its goal
value was. An inspection of the game rules showed that this
is due to the fact that the game rules as such provide players
with insufficient information in this regard. Hence, there is an
argument to be made for requiring that games in competitions
should always be defined so that the percepts suffice for every
player to determine their outcome at the end.

Times The runtimes depicted in Table 1 show that basic
backward chaining in general is an efficient approach for fil-
tering observations and inferring the updated incomplete state
knowledge in a basic player for GDL-II. A notable exception
was the 3-person, imperfect-information version of the Pac-
man game when taking the role of either of the two “ghosts.”
In this game, the reasoner always slowed down significantly
after around move 50 (where the maximal length of that game
is 100 moves), and we had to interrupt the experiments a few
moves later. We re-ran the experiments with a version of the
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basic player that only filters through the observations actu-
ally made instead of also filtering through all non-percepts.
The results given in Table 1 for “vis Pacman (role 1,2)” were
obtained for this simplified legal player.

Conclusion
We have developed a method for filtering with logic pro-
grams and applied it to build a basic legal player for GDL-II
based on backward-chaining. Our notion of filtering is simi-
lar to [Amir and Russell, 2003; Shirazi and Amir, 2011]; in
their case a dynamic system is not described by logic pro-
gram rules but in the Situation Calculus. For our backward-
chaining filtering method we have adapted results for open
logic program from [Bonatti, 2001a; 2001b]. Our experi-
ments showed that the method is sufficiently efficient in al-
most all games from previous GGP competitions. It is worth
stressing that even in games where the reasoner is not fast
enough to be used at every node of a search tree, it can and
in fact should be applied at least at the beginning in order to
guarantee that the player submits a legal move. Our method
also proved effective in almost all games, which supports an
argument that can be made for it to be generally desirable that
all GDL-II games for competitions are written so that back-
ward chaining augmented by support computation suffices to
always determine a player’s legal moves, as in our reformula-
tion of Battleships in Fog.
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Abstract
Monte-Carlo Tree Search (MCTS) has proved a re-
markably effective decision mechanism in many
different game domains, including computer Go
and general game playing (GGP). However, in
GGP, where many disparate games are played, cer-
tain type of games have proved to be particularly
problematic for MCTS. One of the problems are
game trees with so-called optimistic moves, that is,
bad moves that superficially look good but poten-
tially require much simulation effort to prove oth-
erwise. Such scenarios can be difficult to identify in
real time and can lead to suboptimal or even harm-
ful decisions. In this paper we investigate a selec-
tion strategy for MCTS to alleviate this problem.
The strategy, called sufficiency threshold, concen-
trates simulation effort better for resolving potential
optimistic move scenarios. The improved strategy
is evaluated empirically in an n-arm-bandit test do-
main for highlighting its properties as well as in a
state-of-the-art GGP agent to demonstrate its effec-
tiveness in practice. The new strategy shows signif-
icant improvements in both domains.

1 Introduction
From the inception of the field of Artificial Intelligence (AI),
over half a century ago, games have played an important
role as a testbed for advancements in the field, resulting in
game-playing systems that have reached or surpassed hu-
mans in many games. A notable milestone was reached
when IBM’s chess program Deep Blue [Campbell et al.,
2002] won a match against the number one chess player in
the world, Garry Kasparov, in 1997. The ’brain’ of Deep
Blue relied heavily on both an efficient minimax-based game-
tree search algorithm for thinking ahead and sophisticated
knowledge-based evaluation of game positions, using human
chess knowledge accumulated over centuries of play. A simi-
lar approach has been used to build world-class programs for
many other deterministic games, including Checkers [Scha-
effer, 2009] and Othello [Buro, 1999].

∗This paper was also submitted (and accepted) to the main tech-
nical track of IJCAI’13.

For non-deterministic games, in which moves may be sub-
ject to chance, Monte-Carlo sampling methods have addition-
ally been used to further improve decision quality. To accu-
rately evaluate a position and the move options available, one
plays out (or samples) a large number of games as a part of the
evaluation process. Backgammon is one example of a non-
deterministic game, where possible moves are determined by
rolls of dice, for which such an approach led to world-class
computer programs (e.g., TD-Gammon [Tesauro, 1994]).

In recent years, a new simulation-based paradigm for
game-tree search has emerged, Monte-Carlo Tree Search
(MCTS) [Coulom, 2006; Kocsis and Szepesvári, 2006].
MCTS combines elements from both traditional game-
tree search and Monte-Carlo simulations to form a full-
fledged best-first search procedure. Many games, both non-
deterministic and deterministic, lend themselves well to the
MCTS approach. As an example, MCTS has in the past
few years greatly enhanced the state of the art of computer
Go [Enzenberger and Müller, 2009], a game that has eluded
computer based approaches so far.

MCTS has also been used successfully in General Game
Playing (GGP) [Genesereth et al., 2005]. The goal there
is to create intelligent agents that can automatically learn
how to skillfully play a wide variety of games, given
only the descriptions of the game rules (in a language
called GDL [Love et al., 2008]). This requires that the
agents learn diverse game-playing strategies without any
game-specific knowledge being provided by their develop-
ers. Most of the strongest GGP agents are now MCTS-
based, such as ARY [Méhat and Cazenave, 2011], CA-
DIAPLAYER [Björnsson and Finnsson, 2009; Finnsson and
Björnsson, 2011a], MALIGNE [Kirci et al., 2011], and TUR-
BOTURTLE. Although MCTS have proved on average more
effective than traditional heuristic-based game-tree search in
GGP, there is still a large number of game domains where it
does not work nearly as well, for example in non-progressing
or highly tactical (chess-like) games. The more general con-
cept of optimistic actions, encapsulating among other things
tactical traps, is by and large problematic for MCTS [Ra-
manujan et al., 2010; Finnsson and Björnsson, 2011b].

In this paper we propose an improved selection strategy
for MCTS, sufficiency-threshold, that is more effective in do-
mains troubled with optimistic actions and, generally speak-
ing, more robust on the whole. We also take steps towards
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better understanding how determinism and discrete game out-
comes affect the action-selection mechanism of MCTS, and
then empirically evaluate the sufficiency-threshold strategy in
such domains, where it shows significant improvements.

The paper is structured as follows. In the next section we
provide necessary background material, then we discuss suf-
ficiently good moves and the sufficiency-threshold strategy.
This is followed by an empirical evaluation of the strategy in
both an n-arm-bandit setup and GGP. Finally, we conclude
and discuss future work.

2 Background
Before we introduce our new selection strategy we first pro-
vide the necessary background on MCTS, optimistic actions,
and n-arm-bandits (which we use as a part of the experimen-
tal evaluation of the new selection strategy).

2.1 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a simulation-based
search technique that extends Monte-Carlo simulations to be
better suited for (adversary) games. It starts by running a
pure Monte-Carlo simulation, but gradually builds a game
tree in memory with each new simulation. This allows for a
more informed mechanism where each simulation consists of
four strategic steps: selection, expansion, playout, and back-
propagation. In the selection step, the tree is traversed from
the root of the game tree until a leave node is reached, where
the expansion step expands the leave by one level (typically
adding only a single node). From the newly added node a
regular Monte-Carlo playout is run until the end of the game
(or when some other terminating condition is met), at which
point the result is back-propagated back up to the root mod-
ifying the statistics stored in the game tree as appropriate.
MCTS continues to run such four step simulations until de-
liberation time is up, at which point the most promising action
of the root node is played.

In this paper we are mainly concerned with the selec-
tion step, where Upper Confidence-bounds applied to Trees
(UCT) [Kocsis and Szepesvári, 2006] is widely used for ac-
tion selection. At each internal node in the game tree an ac-
tion a∗ to simulate is chosen as follows:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

N(s) stands for the number of samples gathered in state s
and N(s, a) for number of samples gathered when taking
action a in state s. A(s) is the set of possible actions in
state s and Q(s, a) is the expected return for action a in state
s, usually the arithmetic mean of the N(s, a) samples gath-
ered for action a. The term added to Q(s, a) decides how
much we are willing to explore, where the constantC dictates
how much effect the exploration term has versus exploitation.
With C = 0 our samples would be gathered greedily, always
selecting the top-rated action for each playout. When we have
values of N(s, a) which are not defined, we consider the ex-
ploration term as being infinity.

Although MCTS is effective in many game domains, it
has difficulties in other common game structures. Several

Figure 1: An example of an optimistic action in a MCTS tree:
moveA initially, but incorrectly, looks much better than move
B, because the one move that refutes A (scored as 0) has
many siblings that all are winning (for example, in chess, the
refutation move could be a trivial recapture of a piece, how-
ever, by not recapturing the game is lost).

such properties have been identified, including traps, the non-
progression property and optimistic actions [Ramanujan et
al., 2010; Finnsson and Björnsson, 2011b].

2.2 Optimistic Actions

Optimistic actions are moves that upon initial investigation
look promising, even leading to a win, but are easily refuted
in practice. A common source of this problem in simulation-
based search are moves leading to positions where the oppo-
nent has many legal replies but with only one (or a very few)
of them being a refutation. It takes many simulations to ex-
plore all the opponent’s options and establish the true refuta-
tion. Thus, most of the simulations return a positive feedback
to start with, labeling the move path leading to that position
with a too optimistic score. This can happen at any level in
the MCTS game tree, as depicted in Figure 1. Such scenarios
are common in many games, for example, recapturing a piece
in chess (or other material-dominant games).

When such positions occur in the MCTS game-tree they
continue to back-propagate false (too optimistic) values until
enough simulations have been performed. In such scenarios
it may be better to concentrate simulations on the suspected
optimistic move to correct its value. A related scenario is
when there are several good looking moves in a given posi-
tion with a similar value. The standard UCT selection strat-
egy would distribute the simulation effort among them some-
what equally to try to establish a single best move. This may
be problematic in the presence of optimistic moves. A better
strategy may be to instead commit to one of those sufficiently
good moves, at least in discrete outcome deterministic games
as we show. This has the benefit of increasing the certainty of
the returned value and potentially avoid the optimistic move
fallacy. Once the refutation reply has been identified subse-
quent simulations start to return a radically different value,
resulting in the mean score values decreasing.
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2.3 N -arm-bandit and the Mean’s Path
To simulate a decision process for choosing moves in a game
we can think of a one-arm-bandit problem. We stand in front
of a number of one-arm-bandits, slot machines, with coins to
play with. Each bandit has its own probability distribution
which is unknown to us. The question is, how do we max-
imize our profit? We start by playing the bandits to gather
some information. Then, we have to decide where to put our
limited amount of coins. This becomes a matter of balanc-
ing between exploiting and exploring, i.e. play greedily and
try less promising bandits. The selection formula (Equation
1) is derived from this setup [Kocsis and Szepesvári, 2006].
Instead of n one-arm-bandits we can equally talk about one
n-arm-bandit and we will use that terminology henceforth.

What do we mean by the bandit’s probability distribution?
If we only consider the slot machine and discard the game-
tree connection we are likely to identify the distribution with
its mean, which we believe to be a constant value. With in-
creasing number of samples we gather from the bandit the
more the sampled mean approaches the bandit’s mean. This
happens with more and more certainty thanks to the central
limit theorem. Let us re-connect with the game tree. How
well does this approach describe what happens in a game
tree? In a previous section we defined the optimistic move,
i.e. a move which looks promising to begin with when sim-
ulations are scarce. Let us assume we are deciding which
move to play in a given position and one move shows a very
high score after 100 simulations but the scores drops signifi-
cantly after 1000 simulations, e.g. when we have discovered
its refutation further down the game tree. If we play the same
position repeatedly, starting from scratch, and measure the
score for this move after 100 simulations each time, it would
always have a high score. The average of the move for the re-
peated position would approach the move’s correct mean for
100 simulations. However, with additional simulations we
would approach a different mean. This is because in a game
tree the mean can be moving as new promising moves get es-
tablished. Therefore, when using an n-arm-bandit to model
the behavior of a simulation-based search in a game tree, it is
more accurate to accompany each bandit with a path that its
mean will follow as opposed to a constant mean. This path
we call the mean’s path and picture it as a function somewhat
related to a discretized random walk.

When dealing with game trees and a selection mechanism
such as MCTS the mean can truly change as the Monte-Carlo
tree grows larger. For example, in adversary games the MCTS
gradually builds up a minimax line of play and discovering a
strong reply can drastically change a high sample mean. An
important part of Kocsis and Szepesvari’s work [Kocsis and
Szepesvári, 2006] is that they prove that the selection for-
mula (1) will in the end find the true, game theoretic, value
of a position. For the mean’s path this equals a stability will
be reached after enough number of steps — or simulations.
What are then the possible stable values? In deterministic
games the true value of a position can only be one of the ter-
minal values, e.g. in a game with binary results, win or loss,
the mean’s path will only stabilize at the win or loss value.
Deterministic games with a few (e.g. two or three) possi-
ble terminal values will therefore have the same few possible

stable values. This can be exploited as we will show. Non-
deterministic games have a different nature as the chance
nodes can lead to true values unlike the terminal values.

In [Kocsis and Szepesvári, 2006] the goal is to minimize
regret, i.e. we want to minimize our loss of playing the ban-
dits. Using a simple regret would better describe the process
of choosing a move in a game [Tolpin and Shimony, 2012].
We can look at it as an n-arm-bandit where we have a fixed
amount of coins to use to gather information after which we
have to choose one arm to gamble all our money on and the
outcome is dictated by the bandit’s stable or true value. We
only consider simple regret here.

We will not spend many words on the variance of the prob-
ability distribution of each arm. The volatility of a position
could be evaluated in some games which could be reflected
in the value of the standard deviation.

When discussing the action selection for n-arm-bandits we
usually talk about UCB (Upper Confidence Bound) [Auer et
al., 2002] and UCT when working with trees. Avoiding am-
biguity we will talk about UCT for both scenarios throughout
this paper.

3 Sufficiently Good Moves
Assume that after running a fixed number of simulations in a
game, two of the available actions in a position have estab-
lished themselves as substantially better than the others, say
scoring 0.85 and 0.88 respectively where the scoring is be-
tween 0 (loss) and 1 win. In a non-deterministic game with a
substantial chance element, or in a game where the outcome
is scored on a fine grained scale, one might consider spend-
ing additional simulations to truly establish which one of the
two actions is indeed the better one before committing to ei-
ther one to play. In contrast, in a deterministic game with a
few outcomes this is not necessarily the case. Both moves
are likely to lead to a win and no matter which one is played
the true outcome is preserved. So, instead of spending ad-
ditional simulations on deciding between two inconsequen-
tial decisions, the resources could be used more effectively.
Generally speaking, if there are only win or loss outcomes
possible in a deterministic game then once the Q(s, a) values
become sufficiently close to a legitimate outcome based on
enough simulations, spending additional simulations to dis-
tinguish between close values is not necessarily wise use of
computing resources. This is even more so true in games suf-
fering from suspected optimistic moves. As mentioned ear-
lier a deterministic game with only win and loss outcomes
has only two stable values for the mean’s path. We want
to take advantage of situations where the possible stable val-
ues are easily distinguished and the sample means are close
to one of the values. On the other hand when the stable
values are unpredictable or close to each others it is possi-
bly better to use other methods [Tolpin and Shimony, 2012;
Auer and Ortner, 2000] to gain more accurate estimates of the
perceived best moves. We expect this to happen more often in
non-deterministic games and deterministic games with many
possible outcomes.

To better understand this concept think of a position in
chess where a player can capture a rook or a knight. After a

GIGA'13 Proceedings 17



0 100 200 300 400 500

0

0.5

1

Samples(k)

M
e

a
n

 v
a

lu
e

 

 

True value 0

True value 1

(a) Two types of mean’s path
following a random walk

0 500 1000 1500 2000 2500 3000

0

25

50

75

100

Samples (k)

%
 o

f 
o

p
ti
m

a
l 
p

la
y

 

 

20 arms − 10% winners

20 arms − 30% winners

50 arms − 10% winners

50 arms − 30% winners

(b) UCT with various number
of arms and winners

Figure 2: Two examples of mean’s paths and ratio of optimal
play using UCT

few simulations we get high estimates for both moves. Prob-
abilities are that both lead to a win, i.e. both might have the
same true value as 1. For humans it is possibly easier to se-
cure the victory by capturing the rook but we are more inter-
ested in knowing whether there is a dangerous reply lurking
just beyond our horizon, i.e. whether one of the moves is an
optimistic move. We argue that at this point it is more impor-
tant to get more reliable information about one of the moves
instead of trying to distinguish between, possibly, close to
equally good moves. Either our estimate of one of the moves
stays high or even gets higher and our confidence increases or
the estimate drops and we have proven the original estimate
wrong which can be equally important. We introduce a suf-
ficiency threshold α such that whenever we have an estimate
Q(s, a) > α from (1) we say that this move is sufficiently
good and therefore unplug the exploration. To do so we re-
place C in Equation (1) by Ĉ as follows:

Ĉ =

{
C when all Q(s, a) ≤ α,
0 when any Q(s, a) > α.

(2)

We call this method sufficiency threshold (ST). When our es-
timates drop below the sufficiency threshold we go back to
the original UCT method. For unclear or bad positions where
estimates are less than α most of the time, showing occa-
sional spikes, this approach differs from UCT in temporarily
rearranging the order of moves to sample. After such a rear-
rangement the methods more or less couple back to selecting
the same moves to sample from.

4 Experiments
We empirically evaluated the ST selection strategy in three
different scenarios: an n-arm-bandit to clearly demonstrate
its properties, a sample game position demonstrating its po-
tentials in alleviating problems caused by optimistic moves,
and finally in a simulation-based GGP agent to show its ef-
fectiveness on a variety of games.

4.1 N -arm-bandit Experiments
In our n-arm-bandits experiment we consider only true values
0 and 1. With each sample we gather for a bandit we move
one step further along the mean’s path.

Our setup is related to Sutton and Barto’s approach (1998)
but adapted for deterministic environments. Once a path
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Figure 3: 20 arms
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Figure 4: 50 arms

reaches 0 or 1 it has found its true value and does not change
after that. This way we get closer to the true value of a bandit
the more samples we gather from it. Figure 2a shows pos-
sible paths hitting 0 or 1. We let Mi(ki) be the mean value
for bandit i after ki samples. The total number of samples is
k =

∑
i ki. We use the results from the samples to evaluate

the expected rewards of the bandits. Let Qi(k) play the same
role as Q(s, a) in (1), i.e. be the expected reward for bandit i
after k samples. For each k we record which arm we would
choose for our final bet, i.e. with the highest Qi(k) value.

We experiment with a bandit as follows. Pulling an arm
once is a sample. A single task is to gather information for k
samples, k ∈ [1, 3000]. For each sample we measure which
action an agent would take at that point, i.e. which bandit
would we gamble all our money on with current information
available to us. Let V (k) be the value of the action taken
after gathering k samples. V (k) = 1 if the chosen bandit has
a true value of 1 and V (k) = 0 otherwise. A trial consists of
running t tasks and calculate the mean value of V (k) for each
k ∈ [1, 3000]. This gives us one measurement, V̄ (k), which
measures the ratio of optimal play for an agent with respect
to k. There is always at least one bandit with a true value of
1. Each trial is for a single n-arm-bandit, representing one
type of a position in a game. In the experiments that follow
we compare the performance of ST to UCT, using parameter
settings of C = 0.4 and α = 0.6.

We run experiments on 50 different bandits (models) gen-
erated randomly as follows. All the arms start with Mi(1) =
0.5 and have randomly generated mean’s paths although con-
strained such that they hit loss (0) or win (1) before taking 500
steps. The step size is 0.02 and each step is equally likely to
be positive or negative. One trial consisting of 200 tasks is
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run for each bandit, giving us 50 measurements of V̄ (k) for
each agent and each k ∈ [1, 3000]. In the following charts we
show a 95% confidence interval over the models.

In the experiments two dimensions of the models are var-
ied: first the number of arms are either 20 or 50, and second,
either 10% or 30% of the arms lead to a win (the remaining
to a loss). Figure 2b shows V̄ (k) for UCT, which we use as a
benchmark. Figures 3 and 4 show the performance of ST rel-
ative to UCT when using 20 and 50 arms, respectively. The
figures show the increase or decrease in the ratio of optimal
play for each k.

ST is overall doing significantly better than UCT except
when we have 20 arms and 10% winners. With 50 arms the
ST agent is much better than UCT. The general trend is that to
begin with there is simply not enough information for neither
ST nor UCT to figure out which moves are promising and
which are not. After a while ST starts to perform better and
only after many more simulations is UCT able to catch up.

4.2 Game Experiments
Using simplified models as we did in the aforementioned
experiments is useful for showing the fundamental differ-
ences of the individual action-selection schemes. However,
an important question to answer is whether the models fit
real games. First, we try to get a clearer picture of the op-
timistic move and how the ST is able to guide the selection
strategy out of its optimistic move traps. We have setup a
position in the game Breakthrough, frequently played in dif-
ferent variants in GGP competitions. It is highly tactical de-
terministic game with only win and loss outcomes. It has
proved challenging for MCTS to play accurately [Finnsson
and Björnsson, 2008]. Each player starts with its first two
backranks occupied by pawns of its own color and the goal is
to advance a pawn to the opposite end of the board. The first
player to achieve that wins. The pawns move forward, one
square at a time, both straight and diagonally and can capture
opponent’s pawns with the diagonal moves.

Figure 5:
White wins
with a5a6

The position in Figure 5, from a smaller
board game variant (the regular game is
played on an 8 × 8 board), showcases the
problem at hand, and in a way resembles
the types of arms described above. There
are two promising moves which turn out to
be bad, one that wins, and 10 other moves
which do little. In the position, captur-
ing a pawn on a7 or c7 with the pawn
on b6 looks promising since all responses
from black but one lose. Initially our sam-
ples give very high estimates of these two
moves until black picks up on capturing
back on a7 or c7. There is a forced win for
white by playing a6. Black can not prevent
white from moving to b7 in the next move,
either with the pawn on a6 og b7. From b7
white can move to a8 or c8 and win.

Figure 6 shows how UCT and ST perform in the position in
Figure 5. ST clearly outperforms UCT. This position demon-
strates clearly the drawbacks of UCT. We are dealing with a
problem with an optimistic move where UCT samples more
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Figure 7: Statistics for the difference between d and Qmax

or less equally often for each of the three promising moves.
In Figure 6 we see how UCT reaches a plateau around 33%,
where the optimal move is played approximately 1/3 of the
time as UCT needs more samples to distinguish between the
three promising moves. Being able to disprove optimistic
moves early is of a particular interest in GGP where reason-
ing is somewhat slow, often resulting in decisions being made
based on relatively few simulations.

4.3 ST in GGP
We also try the ST selection strategy in a GGP environment
using a world class GGP agent, CADIAPLAYER. We test it on
four games, Chomp, Runners, Connect-4, and Breakthrough 1

with different numbers of simulations for the decision mak-
ing. For ST to work well in a GGP environment it needs a
few adjustments. The GGP agents need to be robust across
many different games. Therefore, we need to soften the suf-
ficiecy threshold a bit. First of all it can be difficult to decide
an α threshold that works for all games. Also, the simulation
results need not be at the correct scale and can be mislead-
ing in its absolute values. The strength of MCTS comes from
ordering the possible actions reasonably, not necessarily with
very accurate values - at least not until near the end of the
game. What we want to do is to discover when our best per-
ceived move, the highestQ(s, a) = Qmax, is ’close enough’
to the winning value. The winning value is not necessarily
1; CADIAPLAYER, for example, discounts the result with the
length of the simulation. We treat this as a classification prob-
lem, where simulations ending in a victory are labelled as the
winning class opposed the other class for non-winning sim-
ulations. Both classes form a distribution which then have a

1All found in the games repository on the Dresden GGP server
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Table 1: ST enhanced CADIAPLAYER vs. CADIAPLAYER

Simulations n 500 1 000 2 000 3 000 5 000 10 000
Runners 48.9± 4.8 53.6± 4.6 52.4± 4.3 55.8 ± 4.0 52.4± 3.7 50.3± 2.7
Chomp 49.0± 4.9 51.0± 4.9 49.5± 4.9 51.3± 4.9 49.5± 4.9 50.3± 4.9
Connect 4 47.0± 4.8 49.3± 4.8 48.4± 4.8 47.6± 4.8 49.1± 4.8 51.3± 4.6
Breakthrough 49.5± 4.9 57.3 ± 4.9 55.0 ± 4.9 55.0 ± 4.9 52.8± 4.9 −

discriminant value, d, where it is equally likely for an unla-
beled simulation result to belong to each class. The literature
is rich in techniques of this sort (e.g., [Bishop, 2006]). Our
approach, for simplicity, assumes the standard deviation of
both distributions to be equal. Thus the discriminant value is
only dependent on the average values of each class and the
number of data points in each class

d =
nother · µwin + nwin · µother

nother + nwin
,

where nwin is the number of data in the winning class, µwin

is their average value and similarly nother and µother are
their counterparts for the non-winning class. The discrimi-
nant value, d, does not factor in where Qmax is positioned
relative to it. This can vary between games. Therefore, we
measure the difference between d and Qmax for each sim-
ulation, as depicted in Figure 7. The accumulation of these
differences forms a distribution which we assume to be a
normal distribution. We then use the statistical Q-function
to measure the probability for a random variable from this
distribution to have a value larger than the current difference
a = Qmax− d. This probability is used directly as the prob-
ability of unplugging the exploration, although we set a floor
of 10%, i.e. it is always at least a 10% chance of choosing
an action to simulate with the traditional way. Perhaps, we
do not need this floor but for the sake of robustness we chose
such an ε-greedy approach. We consider all previous simula-
tions as training data.

Table 1 shows the result between ST enhanced CADI-
APLAYER versus standard CADIAPLAYER. We ran a match
of 400 games between the agents, 200 as each side. We also
ran it for different values nwhich is the fixed number of simu-
lations the agents were given to decide each move. The n val-
ues range from 500 to 10 000. The time and space it needs are
negligible in our GGP environment. The results suggest that
we have windows of simulation counts where ST improves
the player and outside these windows it does not seem harm-
ful, as summarized for Breakthrough in Figure 8.

5 Related Work
The current research focus on improving the selection phase
in MCTS has been on incorporating domain knowledge
to identify good actions earlier, materializing in enhanced
schemes such as RAVE [Gelly and Silver, 2007] and Progres-
sive Bias [Chaslot, 2010]. Accelerated UCT and discounted
UCT [Hashimoto et al., 2011] are two methods which try to
solve the problem of moving mean’s path. Although, they use
a different terminology. Somewhat surprisingly discounted
UCT has not produced positive results. We have also experi-
mented with recency weighted (discounted) average, but with
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Figure 8: ST winning ratio for Breakthrough

mixed success: whereas it was sometimes helpful it seemed
equally often decremental (unlike our ST approach). In [Auer
and Ortner, 2000] and [Tolpin and Shimony, 2012] statistical
methods are used to guide the selection in favorable direc-
tions. Both assume a stable underlying mean’s path and give
significant improvements.

6 Conclusions and Future Work
We have shown that for certain types of games, where the sta-
ble values of the mean’s path are predictable and far apart, we
can improve the MCTS selection strategy with ST. It seems
quite robust across many games, and was never harmful while
proving particularly effective in domains suffering from the
optimistic move syndrome, where it helps to expedite finding
refutations. Furthermore, it seems more effective in games
with a large branching factor, however, it also showed in
practice promise in a low-branching factor game like Run-
ners. This artifact could be explained by ST being able to
search selected positions deeper because committing to a sin-
gle move, thus finding wins and losses earlier. Furthermore,
the ST method comes at little or no cost. It is easy to imple-
ment and the time and space it consumes are negligible (not
measurable in our experiments).

It would be interesting to see whether we get multiple dis-
joint windows of this sort as the number of simulations in-
crease. That falls under future work as well as running exper-
iments with more games. It is also interesting to see how ST
performs in agents designed for a specific games, such as Go.
There, we should be able to figure out the sufficiency thresh-
old offline so ST might come at very little computational cost.
The dynamic version of ST needed for GGP could be im-
proved with better classification tools, of which the machine-
learning literature has plenty.
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Abstract
The aim of General Game Playing (GGP) is to cre-
ate programs capable of playing a wide range of
different games at an expert level, given only the
rules of the game. The most successful GGP pro-
grams currently employ simulation-based Monte
Carlo Tree Search (MCTS). The performance of
MCTS depends heavily on the simulation strategy
used. In this paper we investigate the application of
a decay factor for two domain independent simula-
tion stategies: N-Gram Selection Technique (NST)
and Move-Average Sampling Technique (MAST).
The adjustment is tested in CADIAPLAYER on
20 different games. Three types of games are
used, namely: turn-taking, simultaneous-move and
multi-player. Experiments reveal that a decay fac-
tor significantly improves the NST and MAST sim-
ulation strategy.

1 Introduction
Past research in Artificial Intelligence (AI) focused on de-
veloping programs that can play one game at a high level.
These programs usually rely on human expert knowledge that
is brought into the program by the programmers. In Gen-
eral Game Playing (GGP) the aim is to create programs that
can play a wide range of games at a high level. The main
challenge of GGP is the lack of human expert knowledge.
Therefore, all knowledge need to be generated online by the
program. Furthermore, it is no longer possible to determine
beforehand which search technique is best suited for the game
at hand. These challenges entail that a GGP program can only
become successful when it incorporates a wide range of dif-
ferent AI techniques, like knowledge representation, knowl-
edge discovery, machine learning, search and online opti-
mization.

The first successful GGP programs, such as CLUNE-
PLAYER [Clune, 2007] and FLUXPLAYER [Schiffel and
Thielscher, 2007a; 2007b], were based on minimax with an
automatically learned evaluation function. CLUNEPLAYER
and FLUXPLAYER won the International GGP competition in
2005 and 2006, respectively. However, ever since, GGP pro-
grams incorporating MCTS based approaches have proved
more successful in the competition. In 2007, 2008 and 2012

CADIAPLAYER [Björnsson and Finnsson, 2009; Finnsson,
2012] won; in 2009 and 2010 ARY [Méhat and Cazenave,
2010]; and in 2011 TURBO TURTLE developed by Sam
Schreiber. All three programs are based on MCTS, an ap-
proach particularly well suited for GGP because no game
specific knowledge is required besides the basic rules of the
game.

The performance of MCTS depends heavily on the sim-
ulation strategy employed in the play-out phase [Gelly and
Silver, 2007]. As there is no game dependent knowledge
available in GGP, generic simulation strategies need to be
developed. Tak et al. [2012] proposed a simulation strat-
egy based on N-Grams, called the N-Gram Selection Tech-
nique (NST). The new NST strategy was shown to on aver-
age outperforms the more established Move-Average Sam-
pling Technique (MAST) [Finnsson and Björnsson, 2008],
which was employed by CADIAPLAYER when winning the
2008 International GGP competition.

The information gatherered by NST and MAST are kept
between successive searches. On the one hand this reuse of
information may bolster the simulation strategy as it is im-
mediately known what the strong moves are in the play-out.
On the other hand this information can become outdated as
moves that are strong in one phase of the game are weak
in another phase. In this paper we investigate the applica-
tion of a decay factor for NST and MAST statistics. The
idea of decaying statistics was already applied in Discounted
UCT [Kozelek, 2009] and [Hashimoto et al., 2012]. As these
UCT statistics are tied to a particular game position, the in-
formation does not get outdated in turn-taking deterministic
perfect-information games. Decaying is of limited use here.
However, NST and MAST are applied without taking the
game position into account. As the game situation changes
over time, so does the quality of the NST and MAST statis-
tics.

The paper is structured as follows. First, Section 2 gives
the necessary background information about MCTS. Next,
the simulation strategies NST and MAST are explained in
Section 3. The application of a decay factor is discussed in
Section 4. Subsequently, Sections 5 and 6 deal with the exper-
imental setup and results. Finally, Section 7 gives conclusions
and an outlook to future research.
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Figure 1: Four strategic steps in Monte Carlo Tree Search

2 Monte Carlo Tree Search
CADIAPLAYER [Björnsson and Finnsson, 2009; Finnsson,
2012] uses Monte Carlo Tree Search (MCTS) [Kocsis and
Szepesvári, 2006; Coulom, 2007] to determine which moves
to play. The advantage of MCTS over minimax-based ap-
proaches is that no evaluation function is required. This
makes it especially suited for GGP in which it is difficult
to come up with an accurate evaluation function. MCTS is
a best-first search strategy that gradually builds up a tree in
memory. Each node in the tree corresponds to a state in the
game. The edges of a node represent the legal moves in the
corresponding state. Moves are evaluated based on the aver-
age return of simulated games.

MCTS consists of four strategic steps [Chaslot et al., 2008]
which are outlined in Figure 1. (1) The selection step deter-
mines how to traverse the tree from the root node to a leaf
node L. It should balance the exploitation of successful moves
with the exploration of new moves. (2) In the play-out step a
random game is simulated from leaf node L till the end of the
game. Usually a simulation strategy is employed to improve
the play-out [Gelly and Silver, 2007]. (3) In the expansion
step one or more children of L are added. (4) In the back-
propagation step the reward R obtained is back-propagated
through the tree from L to the root node.

Below we describe how these four strategic steps are im-
plemented in CADIAPLAYER:

1. In the selection step the Upper Confidence Bounds ap-
plied to Trees (UCT) algorithm [Kocsis and Szepesvári,
2006] is applied to determine which moves to select in
the tree. At each node s move a∗ selected is given by
Formula 1.

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) is the visit count of s and N(s, a) is the
number of times move a is selected in node s. The
first term, Q(s, a) is the average return when move a

is played in state s. The second term increases when
state s is visited and siblings of a are selected. If a state
s is visited frequently then even moves with a relatively
low Q(s, a) could be selected again at some point, be-
cause their second term has risen high enough. Thus, the
first term supports the exploitation of successful moves
while the second term establishes the exploration of in-
frequently visited moves. The C parameter influences
the balance between exploration and exploitation. In-
creasing C leads to more exploration.
If A(s), the set of legal moves in state s, contains
moves that are never visited before, then another selec-
tion mechanism is utilized, because these moves do not
have an estimated value yet. If there is exactly one move
that is not visited before, then this one is selected by
default. If there are multiple moves that are not visited
before, then the same simulation strategies as used in
the play-out step are used to determine which move to
select. In all other cases Formula 1 is applied.

2. During the play-out step a complete game is simulated.
The most basic approach is to play plain random moves.
However, the play-outs can be improved significantly by
playing quasi-random moves according to a simulation
strategy [Gelly and Silver, 2007]. The aim is to improve
the performance of the already existing CADIAPLAYER
by introducing new simulation strategies. These simula-
tion strategies are described in Section 3.

3. In the expansion step nodes are added to the tree. In
CADIAPLAYER, only one node per simulation is added
[Coulom, 2007]. This node corresponds to the first po-
sition encountered outside the tree. Adding only one
node after a simulation prevents excessive memory us-
age, which could occur when the simulations are fast.

4. In the back-propagation step the reward obtained in the
play-out is propagated backwards through all the nodes
on the path from the leaf node L to the root node. The
Q(s,a) values of all state-move pairs on this path are up-
dated with the just obtained reward. In GGP the reward
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lies in the range [0, 100].

More details about the implementation of CADIAPLAYER
can be found in Finnsson [2012].

3 Simulation Strategies
This section explains the simulation strategies employed in
the experiments. Subsection 3.1 explains the Move-Average
Sampling Technique used by CADIAPLAYER when it won
the AAAI 2008 GGP competition. Subsection 3.2 explains
the N-Gram Selection Technique (NST).

3.1 Move-Average Sampling Technique
The Move-Average Sampling Technique (MAST) [Finnsson
and Björnsson, 2008; Finnsson, 2012] is based on the prin-
ciple that moves good in one state are likely to be good in
other states as well. The history heuristic [Schaeffer, 1983],
which is used to order moves in αβ search [Knuth and Moore,
1975], is based on the same principle. For each move a, a
global average Qh(a) is kept in memory. It is the average
of the returned rewards of the play-outs in which move a oc-
curred. These values are utilized for selecting moves in the
play-out. Furthermore, if in the MCTS tree a node has more
than one unvisited legal move then the Qh(a) values of these
unvisited moves are employed by Gibbs measure [Casella and
George, 1992] to determine which move to select:

P (s, a) =
eQh(a)/τ∑

b∈A(s) e
Qh(b)/τ

(2)

P (s, a) is the probability that move a will be selected in
state or node s. Moves with a higher Qh(a) value are more
likely to be selected. How greedy the selection is can be tuned
with the τ parameter. In order to bias the selection of unex-
plored moves the initial Qh(a) value is set to the maximum
possible score of 100.

3.2 N-Gram Selection Technique
The N-Gram Selection Technique (NST) was introduced by
Tak et al. [2012]. NST keeps track of move sequences as op-
posed to single moves as in MAST. Tak et al. [2012] showed
that NST often outperforms MAST in GGP.

A method similar to NST is applied successfully in Havan-
nah [Stankiewicz, 2011; Stankiewicz et al., 2012]. Further-
more, NST also bears some resemblance with the simulation
strategy introduced by Rimmel and Teytaud [2010], which is
based on a tiling of the space of Monte Carlo simulations.

NST is based on N-Gram models, which were invented by
Shannon [1951]. An N-Gram model is a statistical model to
predict the next word based on the previous N-1 words. N-
Grams are often employed in statistical language processing
[Manning and Schütze, 1999]. N-Grams also have been ap-
plied in various research on computer games. For instance,
N-Grams can be used to predict the next move of the oppo-
nent [Laramée, 2002; Millington, 2006]. Whereas, Nakamura
[1997] uses N-Grams to extract opening moves. N-Grams can
also be employed for move ordering [Kimura et al., 2011;
Hashimoto, 2011]. Otsuki [2005] applied them in forced
move detection.

The N-Grams in NST consist of consecutive move se-
quences z of length 1, 2 and 3. Similar to MAST the aver-
age of the returned rewards of the play-outs is accumulated.
However, the average reward for a sequence z, here called
R(z), is kept also for longer move sequences as opposed to
single moves only.

The N-Grams are formed as follows. After each simula-
tion, starting at the root of the tree, for each player all move
sequences of length 1, 2 and 3 that appeared in the simu-
lated game are extracted. The averages of these sequences
are updated with the obtained reward from the simulation.
It is not checked whether the same move sequence occurred
more than once in the simulation. Thus, if there are m occur-
rences of the same move sequence, then the average of this
sequence is updated m times. For each player the extracted
move sequences are stored separately.

The move sequences consist of moves from the current
player and moves from the opponent(s). The role numbers
0, 1, 2, · · · , n − 1, which are assigned to the players at the
beginning of a game with n players, are employed in order
to determine the move of which opponent to include in the
sequences. Suppose that the current player has role number
i and there are n players, then the sequences are constructed
as follows. A sequence of length 1 consists of just one move
of the current player. A sequence of length 2 starts with a
move of player with role (i+ n− 1) mod n and ends with a
move of the current player. A sequence of length 3 starts with
a move of player with role (i+ n− 2) mod n, followed by
a move of the player with role (i+ n− 1) mod n and ends
with a move made by the current player. The moves in these
sequences are consecutive moves.

Figure 2 gives an example of a play-out. At each step,
both players have to choose a move, because all games in
GGP are assumed to be simultaneous-move games. The ex-
ample given here concerns a turn-taking, two-player game,
which means that at each step one of the players can only
play the noop move. The example shows that these noop
moves are included in the sequences, because NST handles
them as regular moves. This does not cause any problem, be-
cause these move sequences will only be used during move
selection when the player is not really on turn and has the
only option of choosing the noop move. Therefore, the move
sequences containing noop moves do not negatively influence
the decision process during the play-out.

If the game is truly simultaneous, then at each step all play-
ers choose an actual move instead of some players having
to choose the noop move like in turn-taking games. As ex-
plained above, NST includes only one move per step in its se-
quences. This means that for an n-player simultaneous game,
moves of n− 1 players are ignored each step. Another possi-
bility would have been to include the moves of all players at
each step, but that would lead to too specific sequences. The
disadvantage of such specific sequences is that fewer statisti-
cal samples can be gathered about them, because they occur
much more rarely.

In the play-out, and at the nodes of the MCTS tree con-
taining unvisited legal moves, the N-Grams are used to de-
termine which move to select. For each legal move, the
player determines which sequence of length 1, which se-
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Figure 2: Extracted move sequences from play-out

quence of length 2 and which sequence of length 3, would
occur when that move is played. The sequence of length 1
is just the move itself. The sequence of length 2 is the move
itself appended to the last move played by player with role
(i+ n− 1) mod n. The sequence of length 3 is the move
itself appended to the previous last move played by player
with role (i+ n− 2) mod n and the last move played by the
player with role (i+ n− 1) mod n. Thus, in total three se-
quences could occur. The player then calculates a score for
a move by taking the average of the R(z) values stored for
these sequences. In this calculation, the R(z) values for the
move sequences of length 2 and length 3 are only taken into
account if they are visited at least k times. In the performed
experiments, k = 7. This value was determined by manual
tuning.

If a move has been played at least once, but the sequences
of length 2 and length 3 occurred fewer than k times, then the
R(z) value of the move sequence of length 1 (which is the

move itself) will be returned.
If a move has never been played before, then no move se-

quences exist and the calculation outlined above is not pos-
sible. In that case the score is set to the maximum possible
value of 100 to bias the selection towards unexplored moves.

In this manner, a score T (a) is assigned to each legal
move a in a given state. These scores are then used with
ϵ-greedy [Sutton and Barto, 1998; Sturtevant, 2008] to de-
termine which move to select. With a probability of 1 − ϵ
the move with the highest T (a) value is selected, and with a
probability of ϵ a legal move is chosen uniformly at random.

4 Decay Factor
The information gathered by NST and MAST are kept be-
tween successive searches. On the one hand this reuse of
information may bolster the simulation strategy as it is im-
mediately known what the strong moves are in the play-out.
This is especially important in GGP as the number of simula-
tions to gather information is quite low. On the other hand this
information can become outdated as moves that are strong in
one phase of the game are weak in another phase. More-
over, statistics can be mostly gathered for a particular part of
the search tree that subsequently is not reached as the oppo-
nent moves differently from what was anticipated. Therefore
we propose to introduce a decay factor. For NST in particu-
lar, it would mean that the R(z) values, which store the av-
erage rewards per move sequence, should change based on
the current state of the game. A decay factor would cause
more recent simulations to have added weight on the R(z)
values. It is implemented such that after a move is applied in
the actual game, the visit count of all the stored sequences is
multiplied by a decay factor γ ∈ [0, 1]. A decay factor of 1
means that there is no decay. During the search no decaying
takes place — only after an actual move is made in the cur-
rent game state are the visit counts of the corresponding R(z)
values discounted. A similar scheme is applied for the Qh(a)
values in MAST.

We remark that Stankiewicz [2011] showed that for NST a
decay factor of 0 performs best in Havannah. A decay factor
of 0 means that the results are reset between each move. NST
with a decay factor of 0 resembles the Last-Good-Reply Pol-
icy (LGRP) [Drake, 2009; Baier and Drake, 2010]. In LGRP
the most recent successful replies are stored and a reply is
removed from memory when it is no longer successful.

We have tried to apply a decay factor to UCT as well, with-
out success. A similar approach, called Discounted UCB, was
evaluated by Hashimoto et al. [2012] in Othello, Havannah,
and Go, but did not improve performance.

5 Experimental Setup
The N-Gram adjustments are implemented in CADIAPLAYER
in order to investigate the effectiveness for GGP. This pro-
gram is called CPNST. The program using MAST instead of
NST is called CPMAST. In Subsection 5.1 brief descriptions
are given of the games used in the experiments. In Subsection
5.2 the setup of the experiments is described.
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5.1 Games
Below an overview is given of the games used in the exper-
iments. Note that most of the classic games enlisted below
are usually a variant of its original counterpart. The most
common adjustments are a smaller board size and a bound on
the number of steps. The following two-player, turn-taking
games are used:

• Zhadu is a strategy game consisting of a placement
phase and a movement phase. The first piece that is cap-
tured, determines what other piece need to be captured
in order to win.

• In GridGame each player has to find a book, a candle
and a bell. A score between 0 and 100 is given, based on
how many items where found.

• 3DTicTacToe is a variant on Tic-Tac-Toe. It is played on
a 4×4×4 cube and the goal is to align four pieces in a
straight line.

• TTCC4 stands for: TicTacChessCheckersFour. Each
player has a pawn, a checkers piece and a knight. The
aim of each player is to form a line of three with its own
pieces.

• Connect5 is played on an 8×8 board and the player on
turn has to place a piece in an empty square. The aim
is to place five consecutive pieces of the own color hori-
zontally, vertically or diagonally, like Five-in-a-Row.

• Checkers is played on an 8×8 board and the aim is to
capture pieces of the opponent.

• Breakthrough is played on an 8×8 board. Each player
starts on one side of the board and the goal is to move
one of their pieces to the other side of the board.

• Knightthrough is almost the same as Breakthrough, but
is played with chess knights.

• Othello is played on an 8×8 board. Each turn a player
places a piece of its own color on the board. This will
change the color of some of the pieces of the opponent.
The aim is to have the most pieces of the own color on
the board at the end of the game.

• Skirmish is played on an 8×8 board with different kind
of pieces, namely: bishops, pawns, knights and rooks.
The aim is to capture as many pieces from the opponent
as possible, without losing to many pieces either.

• Merrills is also known as Nine Men’s Morris. Both play-
ers start with nine pieces each. In order to win, pieces
of the opponent need to be captured. The objective is to
form a horizontal or vertical line of three pieces, called
a mill, because pieces in a mill cannot be captured. The
game ends when one player has only two pieces left.

• Quad is played on a 7×7 board. Each player has ‘quad’
pieces and ‘white’ pieces. The purpose of the ‘white’
pieces is to form blockades. The player that forms a
square consisting of four ‘quad’ pieces wins the game.

• Sheep and Wolf is an asymmetrical game played on an
8×8 board. One player controls the Sheep and the other
player controls the Wolf. The game ends when none of

the players can move or when the Wolf is behind the
Sheep. In this case, if the Wolf is not able to move the
Sheep wins. Otherwise, the Wolf wins.

The following three-player, turn-taking games are used:

• Farmers is a trading game. In the beginning of the game,
each player gets the same amount of money. They can
use the money to buy cotton, cloth, wheat and floor. It
is also possible to buy a farm or factory and then the
player can produce its own products. The player that has
the most money at the end of the game wins.

• TTCC43P is the same as TTCC4, but then with one extra
player.

• Chinese Checkers 3P is played on a star shaped board.
Each player starts with three pieces positioned in one
corner. The aim is to move all these three pieces to the
empty corner at the opposite side of the board. This is
a variant of the original Chinese Checkers, because ac-
cording to the standard rules each player has ten pieces
instead of three.

The following two-player, simultaneous-move games are
used:

• Battle is played on an 8×8 board. Each player has 20
disks. These disks can move one square or capture an
opponent square next to them. Instead of a move, the
player can choose to defend a square occupied by their
piece. If an attacker attacks such a defended square,
the attacker will be captured. The goal is to be the first
player to capture 10 opponent disk.

• Chinook is a variant of Breakthrough where two inde-
pendent games are played simultaneously. One game on
the white squares and another one on the black squares.
Black and White move their pieces simultaneously like
Checkers pawns. As in Breakthrough, the first player
that reaches the opposite side of the board wins the
game.

• In Runners each turn both players decide how many
steps they want to move forward or backward. The aim
is to reach the goal location before the opponent does.

• Pawn Whopping is similar to Breakthrough, but with
slightly different movement and is simultaneous.

These games were chosen because they are used in sev-
eral previous CADIAPLAYER experiments [Finnsson, 2007;
Finnsson and Björnsson, 2008; 2009; Björnsson and Finns-
son, 2009; Finnsson and Björnsson, 2010; 2011; Finnsson,
2012]. Pawn Whopping was used during the German Open
in GGP of 2011 [Kissmann and Federholzner, 2011]. Fur-
thermore, this selection contains different types of games.
Namely, two-player games, multi-player games, constant-
sum games and general-sum games (e.g. GridGame, Skir-
mish, Battle, Chinook, Farmers and ChineseCheckers3P).

5.2 Setup
In all experiments two variants of CADIAPLAYER are
matched against each other. The ϵ and k parameters of the
NST simulation strategy are set to 0.2 and 7, respectively.
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Table 1: Win % of CPNST with different values of γ against CPNST with γ = 1, startclock=60s, playclock=30s.
Game γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

Zhadu 26.6 (±3.75) 32.4 (±4.05) 36.5 (±3.80) 47.0 (±3.67) 47.4 (±4.97)
GridGame 49.4 (±5.38) 49.9 (±3.43) 50.5 (±4.11) 49.8 (±3.43) 49.3 (±4.58)

3DTicTacToe 66.5 (±4.97) 69.0(±3.53) 66.2 (±4.29) 61.8 (±4.82) 58.2 (±4.85)
TTCC4 27.5 (±4.75) 44.4 (±5.04) 47.9 (±4.51) 52.5 (±5.63) 51.7 (±4.33)

Connect5 61.1 (±4.72) 69.1 (±4.19) 65.7 (±4.02) 66.2 (±3.69) 59.4 (±4.99)
Checkers 45.6 (±4.76) 54.0 (±4.72) 63.3 (±4.41) 60.8 (±5.38) 62.6 (±5.46)

Breakthrough 37.3 (±5.22) 41.9 (±4.36) 45.5 (±4.25) 44.6 (±5.18) 53.6 (±5.62)
Knightthrough 46.4 (±5.62) 38.1 (±4.95) 43.6 (±4.64) 44.1 (±5.58) 54.6 (±5.60)

Othello 36.1 (±5.29) 44.4 (±4.17) 45.2 (±4.02) 49.1 (±5.46) 48.1 (±5.58)
Skirmish 51.0 (±5.28) 49.1 (±5.28) 53.2 (±4.85) 55.1 (±4.40) 52.2 (±4.48)
Merrills 58.3 (±4.32) 58.6 (±5.05) 58.3 (±3.89) 60.7 (±5.02) 55.6 (±5.22)

Quad 61.5 (±3.87) 68.7 (±3.63) 67.2 (±3.37) 65.3 (±3.11) 60.4 (±4.25)
Sheep and Wolf 44.3 (±4.11) 44.0 (±3.41) 47.2 (±4.08) 49.0 (±3.46) 52.2 (±5.47)

Farmers 44.9 (±4.11) 52.7 (±2.62) 53.0 (±3.13) 50.3 (±2.62) 50.3 (±4.10)
TTCC43P 53.2 (±5.65) 56.2 (±4.31) 54.6 (±3.96) 54.5 (±3.59) 56.2 (±5.61)

ChineseCheckers3P 41.4 (±5.09) 50.7 (±4.24) 53.2 (±4.67) 51.3 (±4.29) 51.0 (±5.66)
Battle 56.6 (±5.32) 65.6 (±4.46) 63.8 (±4.15) 64.5 (±5.03) 59.3 (±5.15)

Chinook 45.7 (±5.30) 55.0 (±4.75) 57.3 (±4.36) 56.9 (±5.31) 54.4 (±5.36)
Runners 55.8 (±4.73) 53.4 (±4.66) 49.7 (±4.66) 49.5 (±4.67) 52.1 (±3.98)

Pawn Whopping 47.2 (±2.72) 50.2 (±2.72) 51.5 (±2.71) 50.0 (±2.71) 50.3 (±2.30)

Their values were determined by manual tuning. The τ pa-
rameter of the Gibbs measure used in CADIAPLAYER was
left unchanged to its preset value of 10. The program using
NST cuts off simulations that take more than 400 moves. The
program using MAST does not cut off.

In the experiments two different time settings are used.
When tuning γ the startclock is set to 60s and the playclock
is set to 30s. In the validation experiments, the startclock is
set to 70s and the playclock is set to 40s. Different time set-
tings are used, because on the one hand we want to have a
high number of simulations per move, but on the other hand
it takes much computation time to tune γ.

In all experiments, the programs switch roles such that
no one has any advantage. For the two-player games, there
are two possible configurations. For the three-player games,
there are eight possible configurations, where two of them
consist of three times the same player. Therefore, only six
configurations are employed in the experiments [Sturtevant,
2008]. All experiments are performed on a computer consist-
ing of 64 AMD Opteron 2.2 Ghz cores.

6 Experimental Results
In the experiments it is examined how different decay fac-
tors perform. The original N-Gram player, CPNST, is matched
against CPNST with a decay factor. After determining the best
decay factor, CPNST is matched against CPMAST to further val-
idate whether the decay factor is a genuine improvement. Fi-
nally, CPMAST with a decay factor is matched against CPNST
to investigate whether decaying is beneficial for MAST as
well. All tables show both a win rate, averaged over at least
300 games, and a 95% confidence interval. The win rate is
calculated as follows. For the two-player games, each game
won gives a score of 1 point and each game that ends in a
draw results in a score of 1

2 point. The win rate is the sum
of these points divided by the total number of games played.
For the three-player games, a similar calculation is performed

except the draws are counted differently. If all three players
obtained the same reward, then the draw is counted as 1

3 point.
If two players obtained the same, highest reward, the draw is
counted as 1

2 point for the corresponding players.

Table 2: Win % of CPNST with γ ∈ {1; 0.6} against CPMAST
with γ = 1, startclock=70s, playclock=40s

Game γ = 1 γ = 0.6

Zhadu 74.9 (±4.51) 75.5 (±4.39)
GridGame 52.3 (±3.79) 52.8 (±4.52)

3DTicTacToe 73.3 (±3.87) 80.4 (±3.59)
TTCC4 85.4 (±2.18) 84.4 (±1.69)

Connect5 70.4 (±3.57) 78.9 (±3.79)
Checkers 68.9 (±5.14) 80.0 (±4.38)

Breakthrough 63.7 (±3.69) 72.3 (±2.82)
Knightthrough 47.7 (±5.29) 50.0 (±5.30)

Othello 67.4 (±4.54) 67.0 (±4.55)
Skirmish 69.6 (±5.01) 70.1 (±5.03)
Merrills 44.6 (±2.81) 50.9 (±2.82)

Quad 79.1 (±2.96) 92.3 (±2.30)
Sheep and Wolf 61.1 (±3.94) 61.3 (±4.73)

Farmers 72.2 (±2.64) 73.1 (±3.11)
TTCC43P 53.2 (±3.66) 58.1 (±2.43)

ChineseCheckers3P 57.6 (±4.87) 55.1 (±5.32)
Battle 19.2 (±4.01) 29.8 (±4.69)

Chinook 73.7 (±2.88) 79.4 (±1.96)
Runners 35.7 (±4.62) 36.7 (±4.60)

Pawn Whopping 52.2 (±2.80) 51.3 (±2.80)

6.1 Decay Factor in NST
Table 1 shows the win rate of CPNST with decay versus CPNST
without decay. Note that no decay means that γ = 1. The
win rates in bold indicate that they are the highest win rate
of their row. The results show that decay may improve the
program. Furthermore, the results demonstrate that simply
resetting the NST statistics each move (which means γ = 0)
can decrease the performance significantly in some games
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Table 3: Win % of CPMAST with different values of γ against CPMAST with γ = 1, startclock=60s, playclock=30s
Game γ = 0 γ = 0.2 γ = 0.6

Zhadu 52.8 (±3.73) 51.2 (±4.44) 54.2 (±3.78)
GridGame 50.0 (±3.56) 50.0 (±4.01) 49.9 (±3.26)

3DTicTacToe 88.0 (±1.95) 92.4 (±2.00) 87.7 (±2.10)
TTCC4 48.3 (±3.65) 50.4 (±4.54) 52.0 (±3.81)

Connect5 77.6 (±3.04) 76.4 (±3.81) 68.8 (±3.44)
Checkers 59.1 (±4.43) 67.4 (±4.58) 65.0 (±4.45)

Breakthrough 53.2 (±5.03) 53.0 (±4.11) 58.0 (±4.91)
Knightthrough 53.2 (±3.92) 54.3 (±3.22) 52.2 (±4.21)

Othello 43.4 (±5.13) 44.9 (±4.22) 46.2 (±5.11)
Skirmish 49.6 (±4.08) 48.6 (±5.22) 51.6 (±4.40)
Merrills 53.5 (±3.71) 54.7 (±3.98) 52.1 (±5.23)

Quad 72.2 (±2.86) 77.8 (±3.17) 73.9 (±2.80)
Sheep and Wolf 50.0 (±3.92) 51.2 (±4.40) 49.2 (±3.59)

Farmers 48.3 (±2.90) 54.3 (±3.25) 53.9 (±4.95)
TTCC43P 51.9 (±3.37) 49.6 (±4.37) 54.0 (±3.64)

ChineseCheckers3P 52.9 (±4.06) 53.1 (±5.20) 51.8 (±4.36)
Battle 50.5 (±3.57) 50.2 (±2.93) 52.6 (±3.82)

Chinook 53.1 (±3.70) 62.0 (±4.64) 60.2 (±3.95)
Runners 51.8 (±4.42) 53.8 (±5.03) 52.5 (±4.08)

Pawn Whopping 49.9 (±2.78) 50.1 (±3.13) 49.5 (±4.78)

(i.e., Zhadu, TTCC4, Breakthrough, Othello, ChineseCheck-
ers3P). The best results are obtained for γ = 0.4 and γ = 0.6.
In order to validate the results, the CPNST with γ = 0.6 is
matched against CPMAST. The parameter γ = 0.6 is regarded
as the best setting, because unlike for γ = 0.4 it never per-
forms really worse than the original program.

As a reference experiment, CPNST with γ = 1 plays against
CPMAST. The results of the validation are given in Table 2.
Again, win rates in bold indicate that they are the highest win
rate of their row. The table reveals that in nine games the per-
formance of the program with a decay factor of γ = 0.6 is
significantly better than the program without a decay factor
(i.e., 3DTicTacToe, Connect5, Checkers, Breakthrough, Mer-
rills, Quad, TTCC43P, Battle, Chinook). In the other games,
the performance is approximately equal. We suspect that es-
pecially games where the quality of a move highly depends
on the game state and current phase of the game, can be im-
proved by using a decay factor. Games without this property
may profit less from a decay factor. This line of reasoning is
supported by the results. Namely in Othello the decay fac-
tor did not improve the results. In this game there are certain
moves that are always good independent of the game state,
like placing a stone in the corner.

Also, as reported previously by Tak et al. [2012], we
see that NST is mostly superior to MAST as a general
move-selection strategy, with the notable exceptions of the
simultaneous-move games Battle and Runners. Both these
games could be classified as greedy as opposed to strategic,
that is, the same greedy action is often the best independent of
the current state and the recent move history (for example, in
Runners the furthest advancing action is the best one to take
in all game states); such situations are best-case scenarios for
MAST.

6.2 Decay Factor in MAST
In the final series of experiments CPMAST with decay was
matched against CPMAST without decay. The results are
shown in Table 3. The win rates in bold indicate that they are
the highest win rate of their row. Again, we see that a decay
factor may improve the program. In contrast with NST, sim-
ply resetting the statistics each move (which means γ = 0)
has approximately the same or better performance than no
decay. The table reveals that in five games the performance
of the program with a decay factor of γ = 0.2 is significantly
better than the program without a decay factor (i.e., 3DTic-
TacToe, Connect5, Checkers, Quad, Chinook). The perfor-
mance stays approximately the same in the other games. Fur-
thermore, notice that there is overlap with NST in the games
where decaying is effective (3DTicTacToe, Connect5, Check-
ers, Quad). This can be explained by the fact that the N-
Grams of length 1 are in essence the same as MAST, which
means that NST will behave similar as MAST when these
techniques are changed in the same way (e.g with a decay
factor).

7 Conclusions and Future Work
In this paper we proposed to apply a decay factor to NST and
MAST. The experiments revealed that a decay factor of 0.6
and 0.2 for NST and MAST, respectively, improves the pro-
gram significantly. It appears that decaying works especially
well in games where it depends heavily on the current game
state which moves are strong (as opposed for a move to be
globally good). Furthermore, the experiments revealed that
simply resetting the NST statistics after each move harms the
performance in some games, while for MAST it does not de-
crease the performance.

As future work it is interesting to investigate how a decay
factor can be applied to the UCT values. We already exper-
imented with a decay factor on the UCT values, but without
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success so far. Also of interest is to find out whether there are
other methods that can be used to decay the UCT values suc-
cessfully. Related work is the Discounted UCB, but this was
also unsuccessful [Hashimoto et al., 2012]. Another direction
of future work would be to investigate whether a decay factor
also works within the search iself.
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Abstract
General Game Playing demands that an AI system
be capable of interpreting a set of rules for a previ-
ously unseen game and reason about the game state
as efficiently as possible. In simulation based rea-
soners, the number of states that can be visited in
a fixed time limit is paramount. One technique for
calculating each game state is Forward Chaining;
where the system calculates all of the relations that
can be calculated from the current state and uses
that as a basis for the next state.
In this work we progress some earlier work on For-
ward Chaining and propose two additional features.
Firstly the augmentation of rule processing using
reference tables to facilitate high speed instantia-
tion of ground relations into a rule, and secondly
an empirical hypothesis ordering strategy utilising
data collected from the operation of the system to
optimise its performance. This paper proposes and
defines these additional features and presents ex-
perimental data to support their use.

1 Introduction
Most General Game Playing (GGP) programs can be decom-
posed into a rule engine and a search engine. The former
processes the rules of the game to determine which actions
are possible, which game states are terminal, and what the as-
sociated utility for each player is. The search engine uses this
information together with some tree search algorithms such
as variants of A*, alpha-beta, or Monte Carlo Tree Search to
decide what action to perform next.

The larger the explored state space, the more informed and
better the submitted decisions. However, GGP competitions
require that playing programs submit an action within a spe-
cific time, say 30 seconds. As a result, the strength of a play-
ing program crucially depends on the speed of the rule engine
and that of the search engine. Given that all state-of-the-art al-
gorithms for search in GGP are data-intensive, the speed bot-
tleneck lies on the side of the rule engine. These algorithms
include Monte Carlo Tree Search [Finnsson and Björnsson,
2008], Nested Monte Carlo Search [Méhat and Cazenave,
2010], as well as depth-first search [Schiffel and Thielscher,

2007] in the classical track of the GGP competition. In the
Imperfect Information track, the Perfect Information Monte
Carlo Sampling approach [Long et al., 2010; Schofield et al.,
2012] puts even more stress on the rule engine.

A popular measure of raw speed performance of rule en-
gine is the number of random simulations (so-called playouts)
the engine can generate in given game in a second. As ex-
ample of the large gap between domain specific engines and
GGP engine, one can observe that an optimized program for
19 × 19 Go can perform millions of simulations per seconds
while typical GGP program perform much less than 1000
simuations per seconds on 7×6 Connect Four, a much shorter
and simpler game [Saffidine and Cazenave, 2011].

Several approaches have been put forward to process game
rules written in the Game Description Language (GDL). The
classic approach is to use a Prolog engine such as YAP [Costa
et al., 2006] to interpret the rules. To this end, a syntactic
translation from GDL to Prolog is almost sufficient. While
the speed of the resulting engine is far from ideal, the easy set-
up makes this approach the most popular one by far among
competition programs.

A similar but more involved approach is to compile GDL
rules to a lower-level language such as C++ or Java so that
the resulting program will simulate Prolog’s SLD resolu-
tion [Waugh, 2009; Möller et al., 2011]. This SLD compi-
lation approach leads to programs that are up to an order of
magnitude faster than with the classic approach. However,
practical use of such a model is hindered by the fact that ac-
tual implementations do not handle the full range of the Game
Description Language, and in particular nested function con-
stants are typically not supported.

Grounding the rules refers to the process of transforming
a game description involving variables into a an equivalent
description where variables have been replaced by possible
instantiations. Not only is grounding the game rules neces-
sary to apply answer-set programming techniques for solving
single agent games [Thielscher, 2009], but a ground descrip-
tion is often faster to execute and interpret with SLD resolu-
tion than the corresponding original description. In particu-
lar, propositional automata can be used when the description
is ground [Cox et al., 2009]. The main problem with this ap-
proach is that it can lead to an exponential blow-up in the size
of the description. Most engines based on grounding fall back
to a classic prolog interpreter when the game is too large to
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be ground. Techniques have been put forward to widen the
range of games that can be efficiently ground [Kissmann and
Edelkamp, 2010], but many games remain out of reach with
current hardware.

Finally, a forward chaining approach that is based on trans-
formations of the source file in the GaDeLaC compiler [Saf-
fidine and Cazenave, 2011]. A few optimizations were pro-
posed and this approach was shown to lead to better perfor-
mance than the classic approach in some situations. Still, the
GaDeLaC compiler relied on generating high-level code and
did not perform any grounding, thereby leaving a margin for
improvement.

In this paper, we take the forward chaining approach a step
further via two distinct contributions. First, we develop refer-
ence tables as an efficient implementation of a data structure
for ground relations. Second we propose an empirical hy-
potheses ordering strategy.

This ordering strategy based on statistics derived from the
domain to be compiled is similar to other empirical library
optimization techniques [Keller et al., 2008; Frigo and John-
son, 2005; Whaley et al., 2001].

The motivation for this work is the improvement of pre-
vious efforts through the design of a High Speed Forward
Chaining Engine that is aligned to the strengths of the modern
CPU and relies on the following guidelines for the implemen-
tation of reference tables.

• Avoid calls to subroutines, functions and complex math;

• Use fixed length arrays rather than vectors;

• Everything reduced to int32;

• Convert repeated calculations to lists;

• Ensure O(n) worst-case complexity for the Knowledge
Base (KB).

2 General Game Playing and Forward
Chaining

2.1 Game Description Language
The Game Description Language (GDL) was proposed in
2005 to represent in a unified language the rules of vari-
ety of games and an extension covering inmperfect informa-
tion games, GDL-II, was specified shortly after [Love et al.,
2006]. It has since been studied from various perspectives.
For instance, the connection between GDL and game theory
was investigated by Thielscher [2011] and connections be-
tween GDL and multi-agent modal logics were studied by
Ruan et al. [2009]. Finally, a detailed description of GDL
with a forward chaining approach in mind was described by
Saffidine and Cazenave [2011].

We assume familiarity of the reader with the GDL and re-
fer to the specification and the GaDeLaC paper for further
details [Love et al., 2006; Saffidine and Cazenave, 2011]. In
particular, we use techniques presented in the latter for ensur-
ing stratification and detecting permanent facts.

2.2 GDL Rule as Engine
The process of forward chaining for a GDL rule may be con-
sidered much like the execution of an SQL statement. There

is a resulting dataset, there are source datasets, and there is a
set of joining conditions. In this work we coin several terms;

Definition 1. We call result a ground instance of a relation
arising from the execution of a rule, precondition a relation
that is ground instantiated in the rule by definition, input a
ground relation, whose instantiation grounds a variable in the
rule, and condition a relation that is ground instantiated in the
rule because all rule variables are already ground.

Let (⇐ r h1 . . . hn) be a rule with head r and n hypothe-
ses h1 through hn. A ground instance of r is a result. A hy-
pothesis relation containing no variable is a precondition. A
hypothesis hi containing a variable x that does not appear in
any hypothesis hj with j < i is an input. A hypothesis such
that all variables appear in previous hypotheses is a condition.

Example 1. The following rule from Breakthrough is used
for calculating legal moves. It contains one precondition, two
inputs and two conditions.

Relation Type
(⇐ (legal white (move ?x1 ?y1 ?x2 ?y2)) Result

(true (control white)) Precondition
(++ ?y1 ?y2) Input: (y1, y2)
(++ ?x2 ?x1) Input: (x2, x1)
(true (cellholds ?x1 ?y1 white)) Condition
(not (true (cellholds ?x2 ?y2 white)))) Condition

2.3 Executing a Rule
Each rule must be executed as efficiently as possible, ideally
with no wasted calculations. As each instance of a relation is
read from the knowledge base it must be processed into the
rule, or failed. Prima facie, each rule will need to be exe-
cuted for every permutation of every instance of every rela-
tion. That means enumerating each relation list in the knowl-
edge base.

However, conditions and preconditions might be tested to
see if they exist (or not exist), and inputs might be remem-
bered between iterations of the rule. And so, we need the
knowledge base to provide a writing, an enumerating, a clear-
ing, and a testing for existence operations. The demands on
the rule processor are equally tough:

• it performs minimal integer calculations,

• it remembers previous calculations,

• it fails inputs and conditions as soon as possible.

3 Knowledge Base
All relations are stored in a knowledge base, including state
relations, facts, and auxilliary relations. They are stored ac-
cording to the name of the relation, as both a list and a
boolean array. In the complexity bounds described below, n
refers to the number of relations currently stored.

The lists of relations are stored in production order in an
integer array using the relation ID1, with an integer counter
giving the length of the list. The length of the integer array
is the size of the maximum superset for the relation.2 It is

1Refer to Definition 4.
2Refer to Definition 3.
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necessary to store the lists in production order so that rules
with circular references will calculate all of the relations. The
list of relations provides the following operations.

• Writing to the list in O(n);

• enumerating the list in O(n);

• clearing the list in O(1).

The boolean array is an indexed array where the relation
ID is used as the index. Agains, its length is the size of the
maximum superset for the relation. It provides the following
operations.

• Writing to the array in O(n);

• testing for Exists(ID) in O(1);

• clearing the list in O(n).

As a result, this implementation for the knowledge base
provides the following operation.

• Writing to a list in O(n);

• enumerating a list in O(n);

• clearing a list in O(n);

• testing for Exists(ID) in O(1).

4 Relations
In the rest of the paper, G will designate a valid GDL sig-
nature and L will be the associated Lexicon3. Let Q be a
relation in G. We denote by dimQ ≥ 0, the arity of Q.

4.1 Rule Inputs and Conditions

The motivation for this work dictates we find the most ef-
ficient way to process a rule. Having found the maximum
superset for each relation we must look at the order that we
process the relations inside a rule. Some relations bring new
groundings for rule variables, some relations are ground in-
stantiated, some relations are expressed in the negative.

Here we make the distinction between inputs and condi-
tions. An input is a relations whose instantiation grounds a
rule variable. A condition is a relation that is ground instanti-
ated, this includes (not . . . ) and (distinct . . . ).

Example 2. Observe that if we change the order of the hy-
potheses from Example 1, their type changes.

Relation Type
(⇐ (legal white (move ?x1 ?y1 ?x2 ?y2)) Result

(true (control white)) Precondition
(++ ?y1 ?y2) Input: (y1, y2)
(true (cellholds ?x1 ?y1 white)) Input: (x1)
(++ ?x2 ?x1) Input: (x2)
(not (true (cellholds ?x2 ?y2 white)))) Condition

3Dictionary of terms converting them to Int32.

4.2 Grounding
Grounding is the process of transforming a GDL description
into an equivalent one without any variables. To do so, one
must identify for each rule R, a superset of the variable in-
stantiations that could fire R. This involves finding supersets
of all reachable terms.

The original specification for GDL allows function con-
stants to be arbitrarily nested. However, this possibility is
barely used in practice and the vast majority of games only
need a bounded nesting depth. We therefore decided to con-
centrate on the GDL fragment with bounded nesting depth as
it makes finding finite supersets of reachable terms possible.
Definition 2. Let Q = (q x1 . . . xdimQ) a relation.

• We denote the domain (actually, a superset of the do-
main) of the jth variable argument of Q by ∆j

Q.

• This set of ground terms ∆j
Q ⊆ L is a superset of reach-

able terms that could occur as jth argument to Q.
We can compute the domains by propagating them recur-

sively from relations in the body of rule to the relation in the
head of the rule. We take the intersection of all the domains of
each variable, excluding relations expressed negatively, in the
body of the rule. This intersection is added to the domain for
the variable in the head of the rule. Alternative methods for
computing supersets of the domains were proposed by Kiss-
mann and Edelkamp [2010].
Example 3. In TicTacToe the rule for legal moves has been
altered to highlight the enumeration of the variable argu-
ments. The domain of the 1st argument of legal is the same
as the domain for the 1st argument of control.

(⇐ (legal ?0 (mark ?1 ?2))
(true (cell ?1 ?2 b))
(true (control ?0)))

It is now possible to define a superset of the instances of a
relation based on the domains for the arguments.
Definition 3. Let Q be a relation in the GDL with name q.

• The set of instances of Q, S (Q), can be obtained as
the set of ground instances of Q where each argument
ranges over its domain.

S (Q) = {(q a1 . . . adimQ),∀1 ≤ i ≤ dimQ, ai ∈ ∆i
Q}

• For a relation Q, the size of the set of instances of Q is
simply the product of the size of the domains:

|S (Q)| =
∏dimQ

i=1

∣∣∆i
Q

∣∣.
4.3 Relation ID
Grounding of relations is achieved by assigning each ground
instance of a relation a unique identification (ID). This is an
integer that can be calculated once the domain of each argu-
ment is known. It is a bijective function so the reverse calcu-
lation can be made from ID back to ground instance.
Definition 4. Let Q be a relation in the GDL, where;

• ∆i
Q ⊆ L is the ordered set of ground terms forming the

domain of the ith argument of the relation Q.
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• I(∆i
Q, l) : D → N is a function that gives the index of a

specific grounding of the ith argument of the relation Q.
The index is zero based.

• χ (q a1 . . . adimQ) : Q → N is a bijective function that
gives the unique identification of a ground instance of
Q, such that;

χ (q a1 . . . adimQ) =

dimQ∑
i=1

I(∆i
Q, l)×

i−1∏
j=1

∣∣∆i
Q

∣∣
Example 4. In TicTacToe there is a relation cell/3 that ex-
presses the contents of a cell in the grid.

?x ?y ?p
χ (cell 3 1 o) 0 1 1 x
= 2× 1 + 0× 3 + 1× 9 1 2 2 o
= 11 2 3 3

The reverse calculation can be made from an ID of 11 back
to (cell 3 1 o).

5 Processing Rules
5.1 Failing Inputs and Conditions
In keeping with the motivation for this work the processing
of each of the inputs and conditions should be accompanied
with a Pass/Fail test. In order to get the optimal performance
we must have an estimate of the probability of an input or
condition passing (or failing).

For an input we base the probability of Pass/Fail on the size
of the rule argument domains being ground by the relation be-
ing input, compared to the size of the maximum superset for
the relation being input into the rule. For example; a relation
bring all new groundings into a rule will always pass; whereas
a relation partially grounded by the rule may not.
Definition 5. Let R be a rule in the GDL, and let Q be a
relation in the body of the rule, where;

• ∆i
R ⊆ L is the set of ground terms forming the domain

of the ith variable argument of the rule R.
• m : Q×N→ N is a mapping from the relation variable

argument index to the rule variable argument index.
• Probability Ppass(Q) is given by;

Ppass(Q) =

∏
j=unground

∣∣∣∆m(Q,j)
R

∣∣∣
|S (Q)|

Example 5. In TicTacToe the relation (cell ?m 1 ?x) has a
Ppass(Q) = 0.33 as the first input in the rule;

(⇐ (row ?m ?x)
(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))

For conditions there is only one instance of the relation
that will satisfy, so we base the probability on the likelihood
of the instance of the relation existing in the knowledge base.
This requires some data to be collected from actual games as
to the average number of instances occurring in each list of
relations.

Definition 6. Let R be a rule in the GDL, and let Q be a
relation in the body of the rule. We denote by Q the aver-
age number of ground instances in the list of Q at the time
of processing the rule R. Let Pexists (Q) = Q

|S(Q)| and

Pnot exists (Q) = 1− Q
|S(Q)| .

Example 6. In Connect4 the relation does/4 only ever has
one ground instance in the knowledge base, but can have 14
variations, so
Pexists((does red (drop 1))) = 0.0714.

5.2 Processing Time
Each rule is executed by enumerating each of the input lists
until every permutation of inputs has been processed. Pro-
cessing involves grounding each variable argument in the rule
according to the ground instance of the input relation and test-
ing the existance (or non existance) of each condition, then
the writing of the resulting relation to the knowledge base.

The processing of each permutation of inputs is terminated
as quickly as possible. As each ID is read from the knowledge
base it is tested for agreement with already ground variables
and Passed or Failed. Hence it is possible to determine the
overall processing time for a rule.

Theorem 1. Let KB be a knowledge base for the GDLG, and
letR be a rule in the GDL, and letQ be a relation in the body
of the rule, where;

• tr is the time to read a RelationID from KB, this includes
the management of the list pointers.

• te is the time to test if a specific RelationID is in the KB.

• tw is the time to write a new RelationID to the KB.

• n is the number of inputs.

• c is the number of conditions.

• Ppass(Q) is abbreviated to Q̂

• The total time T to process a rule is given by adding the
time taken to process inputs, check conditions and post
results;

T =tr ×
n∑

i=1

Qi

i−1∏
j=1

QjQ̂j

+ te ×
n∏

i=1

QiQ̂i ×
c∑

j=1

j−1∏
k=1

Q̂k

+ tw ×
n∏

i=1

QiQ̂i ×
c∏

j=1

Q̂j

5.3 Optimisation
In order to optimise the performance of the High Speed For-
ward Chainer, it is necessary to minimise the Total Processing
Time. This is done by minimising T , above.

An examination of the details of T in the context of the
propsed knowledge base reveals two things;

• the time tr is much greater than te and tw as it involves
the management of the list pointers, and
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• the dominant term in each part of the equation counts the
number of input permutations processed.

In other words, minimise the number of input permutations
and you minimise the processing time.

Corollary 2. Let KB be a knowledge base for G, let R be a
rule in the GDL, and let Q be a relation in the body of the
rule, where;

• In the KB; tr � tw > te.

• The total time T to process the rule R is given by Theo-
rem 1.

• Minimum processing time is achieved by minimising;

n∑
i=1

Qi

i−1∏
j=1

QjQ̂j

• Specifically, input selection and order matters.

This result cannot be over stressed; changing the selection
of inputs to a rule and their processing order can change the
processing time4. For this reason it is important to collect
some real data from the game. We visit between 100 and
1000 states in random simulations to collect these data.

6 Reference Tables
6.1 Reference Tables for Inputs
For inputs we use the reference table to provide a unique num-
ber encoded in the language of the domains for each of the
rule variable. The number represent a unique ID for all of the
rule variables ground so far, similar to the RelationID in Def-
inition 4. It is in fact an enumeration constructed at the same
time as the reference table by counting the input combinations
that pass the rules domain criteria. This unique Reference
Number is combined with the next inputs RelationID to give
a new reference index for a new lookup. It should be noted
that some of the new input’s arguments are already ground;
if they disagree with the ground instance being read from the
knowledge base we set the Reference Number to Fail. This is
consistent with the motivation for this work.

Definition 7. Let R be a rule in the GDL, and let Q be a
relation that is an input to the rule, where;

• χi is the RelationID for the next ground instance of the
relation Qi being the ith input to the rule.

• RefNoi is the value retrieved from the reference table
for the ith input to the rule. RefNo0 = 0.

• RefIndexi is the index (offset) for the reference table
for the ith input to the rule.

• RefTablei is an integer array holding RefNoi.

RefIndexi = RefNoi−1 × | S (Qi) |+ χi

RefNoi = RefTablei[RefIndexi]

(RefNoi = −1)↔ Fail

4Refer to results in Table 1.

6.2 Reference Tables for Conditions
For conditions we use the reference table to provide the Rela-
tionID for performing an Exists() test on the knowledge base.
The last reference number obtained from the inputs is used
as the reference table index. It should be noted that it is pos-
sible to write a rule in such a way as to make some ground
instances of conditions where the groundings disagree with
the argument domains for the relation; in such cases we set
the RelationID to Fail.
Definition 8. Let R be a rule in the GDL, and let Q be a
relation that is a condition to the rule, where;

• χi is the RelationID for a ground instance of the relation
Qi being the ith condition to the rule.

• LastRefNo is the value retrieved from the reference
table for the last input to the rule.

• RefIndexi is the index (offset) for the reference table
for the ith condition to the rule.

• RefTablei is an integer array holding RelationIDi.
RefIndexi = LastRefNo
χi = RefTablei[RefIndexi]
(χi = −1)↔ Fail

6.3 Reference Table for the Result
For the result we use the reference table to provide the Re-
lationID for performing a write to the knowledge base. The
last reference number obtained from the inputs is used as the
reference table index. By now it is impossible to have a fail-
ure as the resulting relation argument domains, by definition,
agree with the argument domains of the rule.
Definition 9. Let R be a rule in the GDL, and let Q be a
relation that is the result to the rule, where;

• χ is the RelationID for a ground instance of the relation
Q being the result of the rule.

• LastRefNo is the value retrieved from the reference
table for the last input to the rule.

• RefIndex is the index (offset) for the reference table
for the result of the rule.

• RefTable is an integer array holding RelationID.
RefIndex = LastRefNo
χ = RefTablei[RefIndex]

6.4 Processing a Rule
In keeping with the motivation for this work, we ground ev-
ery relation to a 4 byte integer and process the integers as
tokens. Initially we considered using an n dimensional array
to lookup the result of each permutation of inputs, however
this was unworkable and not in keeping with the idea of fail-
ing each input as soon as possible. So a Reference Table was
devised that allowed fast memory efficient lookup which in-
cluded failure. The process for executing a rule using the
reference tables (Lookup) is shown below. It shows how in-
put combinations are retrieved from the knowledge base (KB)
and results are posted to the knowledge base.

Efficient coding can reduce this process to a cycle time of
around 15 nanoseconds for a simple rule with two inputs and
two conditions, this equates to about 50 clock pulses.
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Figure 1: Pseudocode for processing a rule. Each Loop pro-
cess the relavent number of Inputs or Conditions based on
the Rule description, this may be none. Finally the Result is
posted to the knowledge base.

Check PreCondition
Loop

Loop
Get Input RelationID from KB
Calculate ReferenceIndex
Lookup ReferenceNumber
if (ReferenceNumber = Fail)

GoTo NextInputCombination
End Loop
ReferenceIndex = ReferenceNumber
Loop

Lookup Condition RelationID
if (Condition Fails)

GoTo NextInputCombination
End Loop
Lookup Result RelationID
Post Result to KB

NextInputCombination:
IncrementInputPointers
If (LastInput) Exit

End Loop

7 Experiments

Experiments were conducted to validate the process for High
Speed Forward Chaining. Compilation and runtime statistics
were gathered for 19 typical GDL games from previous GGP
competitions.5 Each runtime experiment visited many mil-
lions of states and the resulting data were almost identical for
each run. Therefore we repeated each runtime experiment
only 10 times.

7.1 Experimental Setup

The proof of concept had been conducted in the Windows
C++ development environment and the final experiments
were conducted in the same environment. The CPU was
an Intel core i7 with 4 Hyper-threaded cores operating at
3.4GHz. The memory was 8 GB of DDR 3 RAM operating at
1600MHz. The operating system was housed on a Sata3 128
GB solid state hard disk. There was some concern that the
Windows 7 operating system would slow the processing and
special care was take to monitor the experiments for signs
of slowing; with special attention being paid to Hard Page
Faults, indicating that the process was paused while data was
read into the L3 cache. Experiments were run as a single
thread and no Hard Page Faults were detected.

Timing was measured using the internal clock to an accu-
racy of 1 millisecond, and reference table and knowledge base
sizes were calculated to the nearest byte.

5Descriptions can be found on http://games.ggp.org.

7.2 Performance of the Proposed Approach
The first set of experiments aims at showing the attractivity of
the proposed compilation system. First, we show that compi-
lation can be performed within the typical initialization time
at the start of GGP matches. We timed the process through
three stages of initialisation; reading and processing the GDL,
optimising the rules by running the game manually, ground-
ing the relations and rules into the reference tables.

Then we show that the resulting rule engines are fit for
competitive programs. This requires ensuring that the run-
time memory overhead is small so as to allow the search en-
gine as much resource as possible, so we give the size of the
Reference Table and the size of the Knowledge Base. Fi-
nally, we need to demonstrate that the rule engines can pro-
cess games fast enough. For each game rule in the bench-
mark, we ran Monte Carlo simulations from the initial state
to a final state for 30 seconds. We counted the number of vis-
ited states and we display the average number of thousands
of states (kilo-states) visited in 1 second. We also show the
total number of complete games played out in 30 seconds (in
thousands).

We have laid a full set of results in Table 1. It is unwise
to make general statement about the results as a whole, so we
highlight individual results in the discussion.

Amazons This was the most challenging game. The opti-
misation time of 21 seconds was for a single state to be fully
calculated using a forward chaining process with no ground-
ings or reference tables, at which point the optimiser termi-
nated as it was over the 10 second time limit. However once
optimised and ground each new state could be fully calculated
in less than five milliseconds. That is a 4 orders of magnitude
improvement.

Connect4 The GDL for this game defines a diagonal line.
This rule cycles through many 100s of permutations for each
round in the game, but only delivers a result once every 200
rounds. Whilst necessary, it is the limiting factor in the speed
of processing the rules.

Pancakes6 The astronomical number of 2 million states
visited in one seconds in driven by the large number of per-
manent facts that have been reduced to Pass/Fail entries in the
reference tables. This is typical of many of the fast games.

TicTacToe This is the most popular game in the literature
and became our benchmark during development; the fact that
we can visit 9 hundred thousand states in one seconds is a
testament to the success of this work.

7.3 Hypothesis Ordering
We have seen in Example 1 that different relation orderings in
a given rule could lead to the relations being assigned a differ-
ent type. In Section 5.2 we have argued that as a result of the
different possible types the rule engine speed depended on a
good ordering of the relations. We now provide experimental
data to substantiate that claim. Namely, we measured the rule
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Table 1: Compilation time and performance of the resulting engine.
Compilation time (sec) Runtime footprint (kB) Runtime speed

Game GDL Optimise Ground Reference Knowledge kStates kPlayouts
Tables Base in 1 sec in 30 sec

Amazons 14.27 20.96 12.76 333,324 29,795 0.2 0.047
Asteroidserial 1.00 0.07 0.06 336 5 370 118
Beatmania 0.30 0.04 0.01 23 3 366 180
Blocker 0.24 0.08 0.01 4 2 638 1,955
Breakthrough 0.48 0.41 4.47 20,619 103 168 88
Bunk t 0.30 0.03 0.02 8 2 595 1,913
Chomp 0.31 0.02 0.01 130 3 694 3,862
Connect4 0.44 0.64 0.02 62 5 111 142
Doubletictactoe 0.28 0.03 0.01 8 2 636 2,044
Hanoi 0.31 0.06 0.03 164 6 1,375 1,289
Lightsout 0.22 0.02 0.01 6 2 728 1,040
Minichess 0.73 1.31 0.12 1,583 41 75 227
Nim1 0.25 0.17 0.03 481 6 234 895
Pancakes6 0.38 0.01 0.09 2,196 461 2,046 1,507
Peg bugfixed 0.73 5.03 12.54 16,420 28 139 164
Roshambo2 0.24 0.02 0.01 35 1 1,612 5,040
Sheep and Wolf 0.49 3.63 1.96 38,799 85 94 72
Tictactoe 0.21 0.02 0.01 7 1 898 3,118
Tictactoex9 0.50 0.16 0.06 839 6 112 109

engine speed in terms of thousands of processed states per
second for the game rules of the benchmark with 3 different
rule ordering strategies.

Table 2 displays the results we obtained. In the Original
column, we kept the ordering present in the source file. In the
two other columns, we used Corollary 2 and its dual to define
the estimated Best and Worst orderings.

We can see from the results that the ordering provided by
the game rule author could generally be improved upon. Al-
though many authors spend effort improving the GDL files
they write, we can not expect that their ordering would be op-
timal for every approach for processing GDL. Additionally,
we can see that the Best often provides significant improve-
ment over the two other tested orderings. This gives practical
evidence that Corollary 2 provides a good approximation of
the optimal ordering.

Amazons and Breakthrough In some games the less than
optimal configuration of the rules produced a reference table
too large to be stored in RAM. This is shown in the table
as Failed. It is worth noting that rules that are two big to
be ground can always be processed without reference tables.
This is may be many orders of magnitude slower, but it is
possible.

Sheep and Wolf The Best configuration did process the
rules with fewer permutations of inputs and hence fewer
steps, but this required substantially more memory for the
reference tables. In this case the movement of memory pages
from RAM to the Cache produced a less than optimal perfor-
mance. This outcome suggests some future work.

Table 2: Impact of the ordering of hypotheses in rules. We
consider the original ordering as dictated by the input source
file, and the estimated worst and best orderings according to
Theorem 1. For each game in our benchmark, we provide the
number of thousands of states (kStates) processed per second.

Game Worst Original Best

Amazons Failed Failed 0.2
Asteroidserial 351 378 370
Beatmania 342 366 366
Blocker 530 608 638
Breakthrough Failed 145 168
Bunk t 471 539 595
Chomp 77.5 693 694
Connect4 41.3 78.7 111
Doubletictactoe 457 548 636
Hanoi 188 1,370 1,380
Lightsout 537 551 728
Minichess 62.8 62.7 74.8
Nim1 136 225 234
Pancakes6 1,920 1,960 2,050
Peg bugfixed 3.2 3.6 139
Roshambo2 362 1,480 1,610
Sheep and Wolf 76.9 101 94.3
Tictactoe 771 868 898
Tictactoex9 94.3 109 112
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8 Conclusion
Clearly we have improved the speed of the forward chain-
ing approach to the Game Description Language with the ap-
proach outlined in this paper.

The closest comparitive work in this field is Kissmann and
Edelkamp [2010]. It is difficult to give a single figure that
defines the improvement in performance over the results pub-
lished by Kissmann and Edelkamp [2010] as each game var-
ied by a different, and in some cases dramatic, amount. If we
exclude the highest and lowest differences we can say that we
are generally 3 times faster then their approach.

However, the two approaches are not incompatible and fu-
ture work could investigate how to best take advantage of
both. Indeed, Kissmann and Edelkamp [2010] obtain much
smaller sets of instances than we do. In turn, this would
lead to smaller Reference Tables and Knowledge Base which
could improve the overall performance significantly in larger
domains.
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Abstract
General Game Playing is the design of AI systems
able to understand the rules of new games and to
use such descriptions to play those games effec-
tively. Games with imperfect information have re-
cently been added as a new challenge for existing
general game-playing systems. The only published
solution to this challenge, HyperPlay, maintains a
collection of complete information models. In do-
ing so it grounds all of the unknown information
thereby valuing all information gathering moves at
zero—a well-known criticism of such sampling-
based or particle filter systems.
We have extended HyperPlay to better reason
about its knowledge. This escalates reasoning
from complete-information models to incomplete-
information models, and correctly values informa-
tion gathering moves. In this paper we describe
the new HyperPlay-II technique, show how it was
adapted for use with a Monte Carlo decision mak-
ing process, and give experimental results demon-
strating its superiority over its predecessor.

1 Introduction
General Game Playing (GGP) is concerned with the design
of AI systems able to understand the rules of new games
and to use such descriptions to play those games effec-
tively. GGP with perfect information has made advances,
thanks largely to the standardisation of the Game Descrip-
tion Language [Love et al., 2006] and its widespread adop-
tion, particularly in the AAAI GGP Competition [Genesereth
et al., 2005]. Successful players typically employ either
automatically generated evaluation functions [Clune, 2007;
Schiffel and Thielscher, 2007] or some form of Monte Carlo
technique such as the modern UCT [Björnsson and Finnsson,
2009]. The relative ease of Monte Carlo parallelisation has
also rewarded distributed and cluster-based hardware in this
domain [Méhat and Cazenave, 2011].

Games with imperfect information have recently been
added as a new challenge for existing general game-playing
systems [Thielscher, 2010]. However little progress has been
made on these types of games beyond a specification of what

their rules should look like [Quenault and Cazenave, 2007;
Thielscher, 2011]. This was confirmed at the recent Aus-
tralasian Joint Conference on Artificial Intelligence where the
game descriptions were all designed to test a specific prop-
erty, ie. games that are hard to play for a clear reason. One
such game was Number Guessing, where a player must guess
a random number after asking the fewest number of binary
questions it can. Other games tested concealing private in-
formation, opponent modelling, managing large probabilistic
domains, and decomposition.1

Beyond GGP, Frank and Basin [2001] have investigated
imperfect-information games with a focus on Bridge, pre-
senting a ‘game-general’ tree search algorithm that exploits
a number of imperfect-information heuristics. This may
effectively complement existing work applying theorem-
proving techniques [Schiffel and Thielscher, 2009]. The Al-
berta Computer Poker Research Group has developed sys-
tems at the forefront of computer Poker players [Billings
et al., 2006]—a challenging domain combining incomplete
and misleading information, opponent modelling, and a large
state space. While not explicitly interested in GGP, they do
describe several techniques that could generalise to this field,
including miximix, fast opponent modelling, and Nash equi-
librium solutions over an abstracted state space. Meanwhile,
our work is motivated by set sampling [Richards and Amir,
2009] and by particle system techniques [Silver and Veness,
2010]. Similar special-case applications of sampling to re-
duce imperfect- to perfect-information can be found in [Gins-
berg, 2011; Kupferschmid and Helmert, 2007].

Despite these advances in related fields, the only published
work we are aware of that attempts to model and play gen-
eral imperfect-information games is HyperPlay [Schofield
et al., 2012], which presents a partial solution to this chal-
lenge by maintaining a collection of models of the true game
as a foundation for reasoning and move selection. Hyper-
Play’s strength is in sacrificing a complete representation of
all possible worlds in the information set of an imperfect-
information game. By restricting its attention to a subset
of possible worlds, it is able to correctly reason about a
large class of imperfect-information games without becom-
ing intractable. However this strength becomes a weakness

11st Australian Open 2012, see https://wiki.cse.
unsw.edu.au/ai2012/GGP
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1 role(agent).
2 role(random).
3
4 colour(red).
5 colour(blue).
6
7 init(round(0)).
8
9 legal(random,arm(C)) :- colour(C), true(round(0)).

10 legal(random,noop) :- not true(round(0)).
11 legal(agent,noop) :- true(round(0)).
12 legal(agent,ask) :- true(round(1)).
13 legal(agent,wait) :- true(round(1)).
14 legal(agent,cut(C)) :- true(round(2)), colour(C).
15
16 sees(agent,C) :- does(agent,ask), true(armed(C)).

17 next(round(1)) :- true(round(0)).
18 next(round(2)) :- true(round(1)).
19 next(round(3)) :- true(round(2)).
20 next(armed(C)) :- does(random,arm(C)).
21 next(armed(C)) :- true(armed(C)).
22 next(score(90)) :- does(agent,ask).
23 next(score(100)) :- does(agent,wait).
24 next(score(S)) :- true(score(S)), not explodes.
25 next(score(0)) :- explodes.
26
27 explodes :- true(armed(C)), does(agent,cut(C)).
28
29 terminal :- true(round(3)).
30 goal(agent, S) :- terminal, true(score(S)).
31 goal(agent, 0) :- not terminal.
32 goal(random,0).

Figure 1: GDL-II description of the Exploding Bomb game.

when reasoning about its own knowledge is critical to suc-
cessful play, since the sampling technique ‘solves’ imperfect-
information by, sometimes erroneously, escalating hypothesis
to fact. Thus, while all samples (known as hypergames) may
agree on which move to do next, the individual reasons may
be contradictory.

For example in Number Guessing all hypergames ‘already
know’ the secret number, so they all agree to guess. In the
next round, however, it is revealed that there was only a ‘su-
perficial agreement’ between the hypergames. This is a crit-
icism shared with the broader category of particle filter sys-
tems [Silver and Veness, 2010].

In this paper we propose HyperPlay-II, an extended ver-
sion of the original technique able to play a much larger class
of imperfect-information games by reasoning on incomplete-
information models. This new technique values information
correctly according to the expected cost/benefit, performs
information-gathering moves when appropriate, is protective
of information that should remain discreet, and requires no
additional resources over its predecessor.

The remainder of the paper is organised as follows. In the
next section, we recapitulate syntax and operational seman-
tics of the Game Description Language GDL-II, which pro-
vides the formal basis for General Game Playing [Genesereth
et al., 2005; Thielscher, 2010]. We subsequently review
the previous technique and describe the general HyperPlay-
II technique. Thereafter, we report on experiments between
the new and the old algorithms. We conclude with a short
discussion.

2 Background: Game Description Language
The science of General Game Playing requires a formal lan-
guage that allows an arbitrary game to be specified by a com-
plete set of rules. The declarative Game Description Lan-
guage (GDL) serves this purpose [Genesereth et al., 2005]. It
uses a logic programming-like syntax and is characterised by
the special keywords listed in Table 1.

Originally designed for games with complete informa-
tion [Genesereth et al., 2005], GDL has recently been ex-
tended to GDL-II (for: GDL with incomplete/imperfect infor-
mation) by the last two keywords (sees, random) to de-
scribe arbitrary (finite) games with randomised moves and

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position
legal(R,M) R can do M in the current position
does(R,M) player R does move M
next(F) F holds in the next position
terminal the current position is terminal
goal(R,V) R gets payoff V

sees(R,P) R perceives P in the next position
random the random player (aka. Nature)

Table 1: GDL-II keywords

imperfect information [Thielscher, 2010].
Since the number guessing game would take too much

space, we use a much simpler game called Exploding Bomb
as our running example. As with number guessing, this game
puts an emphasis on the value of knowledge and information-
gathering moves.

Example 1. The GDL-II rules in Fig. 1 formalise a sim-
ple game that commences with the random player choosing
a red or blue wire. This arms a bomb accordingly. Next,
the agent may choose whether or not to ask which wire was
used; asking carries a cost of 10% to the final score. Finally,
the agent must then cut one of the wires to either disarm—or
detonate—the bomb.

The intuition behind the GDL rules is as follows.2 Line 1
introduces the players’ names. Line 7 defines the single fea-
ture that holds in the initial game state. The possible moves
are specified by the rules for legal: in the first round, the
random player arms the bomb (line 9); then the agent gets
to choose whether to ask or wait (lines 12–13), followed by
cutting a wire of his choice (line 14). The agent’s only per-
cept is the true answer if he decides to enquire about the right
wire (line 16). The remaining rules specify the state update
(rules for next); the conditions for the game to end (rule for
terminal); and the payoff (rule for goal).

2A word on the syntax: We use infix notation for GDL-II rules as
we find this more readable than the usual prefix notation. Variables
are denoted by uppercase letters.
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GDL-II comes with some syntactic restrictions—for de-
tails we must refer to [Love et al., 2006; Thielscher, 2010]
due to lack of space—that ensure that every valid game de-
scription has a unique interpretation as a state transition sys-
tem as follows. The players in a game are determined by the
derivable instances of role(R). The initial state is the set
of derivable instances of init(F). For any state S, the le-
gal moves of a player R are determined by the instances of
legal(R,M) that follow from the game rules augmented
by an encoding of the facts in S using the keyword true.
Since game play is synchronous in the Game Description
Language,3 states are updated by joint moves (containing one
move by each player). The next position after joint move ~m
is taken in state S is determined by the instances of next(F)
that follow from the game rules augmented by an encoding of
~m and S using the keywords does and true, respectively.
The percepts (aka. information) a player R gets as a result of
joint move ~m being taken in state S is likewise determined by
the derivable instances of sees(R,P) after encoding ~m and
S using true and does. Finally, the rules for terminal
and goal determine whether a given state is terminal and
what the players’ goal values are in this case.

On this basis, game play in GDL-II follows this protocol:
1. Starting with the initial state, which is completely known

to all players, in each state each player selects one of
their legal moves. By definition random must choose a
legal move with uniform probability.

2. The next state is obtained by (synchronously) applying
the joint move to the current state. Each role receives
their individual percepts resulting from this update.

3. This continues until a terminal state is reached, and then
the goal relation determines the result for all players.

3 Lifting HyperPlay
The motivation for this work is the weakness formally identi-
fied in Definition 3 below, in that the original technique seeks
to maximise the expected outcome from a sample across the
information set for the current round. By sampling the infor-
mation set, all unknown information is ground and the max-
imisation process will select against any information gather-
ing move that has a cost. This is HyperPlay’s Achilles’ heel.

For example HyperPlay is unable to play the Number
Guessing game because it incorrectly extrapolates individual
samples of the information set (hypergames) to fact rather
than treating multiple samples in concert—one hypergame
‘knows’ the number is three, another ‘knows’ it is seven.
Each hypergame then chooses to guess rather than incur the
cost of asking a question. These hypergames are never forced
to justify their decisions.

To remedy this weakness, we present the HyperPlay-II
technique, a refinement of the original technique to include an
Imperfect Information Simulation (IIS) in the decision mak-
ing process. This allows reasoning directly with imperfect in-
formation, exploring the consequences of every action given

3Synchronous means that all players move simultaneously. Turn-
taking games are modelled by allowing players only one legal move
without effect (such as noop) if it is not their turn.

its context, and using these outcomes to make a decision.
This allows the new technique to encompass larger (ie. non-
singleton) subsets of the information set. The result is that
HyperPlay-II places the correct value (based on cost/benefit)
on knowledge and will choose information gathering moves
when appropriate.

The Original Technique HyperPlay is described as a solu-
tion to the challenge of imperfect information games play, by
maintaining a bag of models of the true game as a foundation
for reasoning and move selection. It provides existing game
players with a bolt-on solution to convert from perfect in-
formation games to imperfect-information games [Schofield
et al., 2012]. Effectively it maintains these models (hyper-
games) by updating them after every move so that they agree
with all of the percepts received by the player and ground ev-
erything that remains unknown. Move selection is done by
maximising the expected reward across all of the hypergames
using a weighting factor based on the probability that the hy-
pergame is the true game.

Decision Making Process As with the original approach,
the new technique requires a bag of models of the informa-
tion set (hypergames), representing a weighted sample. Very
similar to a weighted particle filter in that all unknowns are
grounded, and each model is updated based on move choices
(actions) and percepts (signals).

Unlike the original approach, the expected payoff values
reflect the rewards from the optimal strategy being executed
in an imperfect-information game. This addresses the princi-
ple failing of the original technique, which used the reward
values from the optimal strategy being executed in a perfect-
information game.

We now formally define the HyperPlay-II decision making
process, adapting notation from [Osborne, 2004].
Definition 1. Let G be an imperfect information game as de-
scribed in the Game Description Language (GDL)

• N is a set of players in G.
• V is a set of nodes on the game tree of G.
• T is a set of terminal nodes.
• D = V \T is a set of decision nodes.
• H is the information partition of D, and H ∈ H is the

information set for the current round in the game.
• An(H) is a set of moves available to player n ∈ N in

the current information set H . Sometimes referred to as
equivalence classes.

Definition 2. LetG be an imperfect information game, with a
game tree, information setH and equivalence classesAn(H)

• an ∈ An(H) is a move available to player n.
• α = 〈a1...an〉 is a move vector (tuple of moves with one

move for each role) for the current round.
• do : α,D → 2V is the successor function defined by the

game G.
• di+1 = do(α, di) where di ∈ D is how the game pro-

gresses from one decision node to the next.
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• hi+1 = do(α, hi) where hi ∈ H move the game from a
node in the current information set to a node in the next
information set.

We first show the move selection process for the original tech-
nique so as to make a comparison with the new technique.

Definition 3. LetG be an imperfect information game, with a
game tree, information setH , equivalence classesAn(H) and
a successor function do. The expected value of information
set is given by

E(H) = maxa∈An(H)[avgh∈H [E(do(a, h))]]

where

• h ∈ H is a hypergame;

• do(a, h) is an action with perfect information, and the
expected value is provided by the embedded perfect in-
formation player.

By comparison the new technique calculates the expected
value of the information set recursively until all of the paths
have terminated, then maximises that value.

Definition 4. LetG be an imperfect information game, with a
game tree, information setH , equivalence classesAn(H) and
a successor function do. The expected value of information
set is given by

E(H) = maxa∈An(H)[E(do(a,H))]

recursively,

• terminating with E(τ) = 1
|τ |

∑
v∈τ Reward(v, n)

where τ ⊆ T ;

• do(a,H) is an action with imperfect information, and
the expected value cannot be provided by the embedded
perfect information player.

Both techniques find the move in the current round that
maximises the expected value of the information set. The old
technique collapses the information set into a sample of hy-
pergames, by grounding the unknown values. The other cal-
culates the true expected value of the information set. For this
reason, the new technique always places the correct value on
information gathering moves, whereas the old technique re-
values information gathering moves at zero when it grounds
all of the unknowns. This is the key distinction between the
techniques.

Example We now present a worked example of how ex-
pected values are calculated in the Exploding Bomb game (cf.
Fig. 1). Recall that play commences with the random player
choosing a red or blue wire. Next, the agent chooses whether
or not to ask which wire was used; asking carries a cost of
10% to the final score. Finally, the agent must then cut one of
the wires to either disarm—or detonate—the bomb.

Fig. 2 shows the expected outcomes E(aj) in round 1 for
each action in the game tree. For brevity we refer to actions
(cut/arm) blue as b, (cut/arm) red as r, ask as a, wait as w,
and to states as do(cut blue, do(ask, do(arm red, v0))) = rab.
Note the change in order.

Figure 2: The Exploding Bomb game tree

The reward sequences are R(rwb) = R(bwr) = 100,
R(rab) = R(bar) = 90, and R(bwb) = R(rwr) =
R(bab) = R(rar) = 0. The information set in round 1 is
H = {b, r}.

The old player considers both hypergames equally likely
and the policy is uniform, hence E(ask|H) is the average of
R(bab)×0.5+R(bar)×0.5 andR(rab)×0.5+R(rar)×0.5
is 45. The policy for the new player recognises the cor-
rect move, so π∗HPII gives probability 1.0 to hypergames rab
and bar, and probability 0.0 to the other two states. Thus
E(ask|H) is now the average of R(bab)× 0+R(bar)× 1.0
and R(rab)×1.0+R(rar)×0 is 90. Similarly for wait, the
old player favours its chances at guessing correctly in prefer-
ence to paying the penalty for asking, so E(wait H) = 50
and a∗HP = wait. The new player arrives at the same ex-
pected value since the information set cannot be divided, and
so chooses the more promising ask action: a∗HPII = ask.

agent does HyperPlay HyperPlay-II

Round 1:
ask 45 90
wait 50 50
Round 2:
cut armed 50 90
cut unarmed 50 0

Table 2: Expected outcomes for Exploding Bomb

This result can be compared to the experimental results
given in Table 3.

4 Experiments

A series of experiments were designed to test the capabilities
of the new technique using the high-throughput computer fa-
cilities at the School of Computer Science and Engineering.
We used the games played at the recent Australasian Joint
Conference on Artificial Intelligence as inspiration for the
experiments that would validate our claim that the new tech-
nique correctly values moves that seek information. The con-
ference organisers had specially designed games that would
challenge the state of the art of GDL-II players so as to en-
courage research and development in this field.
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4.1 Player Resources

As with the original technique, the resources were varied to
demonstrate the change in performance as resources were in-
creased. However the new technique carries four resource
parameters, compared to two parameters in the original. The
original technique contained hypergames each with an em-
bedded GDL player (we used Monte Carlo simulations). Now
we have hypergames each with an embedded Imperfect In-
formation Simulation (IIS), each with a GDL-II player for
each role, each containing hypergames, each with an em-
bedded GDL player (again we used Monte Carlo simula-
tions). Hence a resource number of eight means the player
has eight models of the true game, each running eight IIS,
where each player in the IIS is modelled by an original Hy-
perPlayer, each with eight models of IIS game and running
eight Monte Carlo simulations for each move choice. For a
two-player game with an average of ten moves there would
be 8 × 8 × 2 × 10 × 8 = 81920 Monte Carlo simulations
being run for each move choice in the true game.

This exponential growth in the number of Monte Carlo
simulations presented a challenge since a fully-resourced
original player typically required resources of ~32 hyper-
games, each running ~32 simulations for each possible move
in each round. A similar level of resourcing would make
the new technique intractable. However experiments showed
otherwise—the data below shows that the new player can
function optimally4 with the same number of total resources
as the original player. That is, where the original player might
need a resource index of 32 (= 322 simulations), the new
player only requires a resource index of

√
32. Which trans-

lates to exactly the same CPU time for both players. This re-
sult emphasises the contribution made by the new technique
in both efficacy and efficiency.

4.2 Games and Simulations

We have implemented a version of the new technique (the
‘HyperPlayer-II’) to validate our claim that it places the cor-
rect value on knowledge and will seek information appropri-
ately. As with the previous research, we modelled the game
server and both players in a single thread so it could be paral-
lelised across many CPUs. Each datum below is supported by
one hundred games; a 99% confidence interval is calculated
and shown as an error bar.

4.3 Equal Resources

Some experiments were conducted with two-player games,
pitting the original player against the new player using equal
resources. For a resource index of four, the new player would
have four hypergames, each running an IIS with four hyper-
games, while the old player would have 16 hypergames.

Some games show a player resource index of zero. This
represents random decision making and serves to provide a
basis for improvement.

4A player is ‘optimal’ when increasing its resources will not lead
to better play. We refer to this as ‘adequate resourcing’.

5 Results
The results of each experiment are given below, along with a
commentary on their significance.

5.1 Exploding Bomb
The old player never asks the question in this game since it
carries a penalty that it thinks it can avoid (due to superfi-
cial agreement of its hypergames). This contrasts with the
new player which correctly identifies that asking the question
gives the best expected outcome. Table 3 shows the experi-
mental results of calculations made by each technique when
choosing an action. Remember that the action with the high-
est expected score is chosen for each round (shown in bold).
Note the HyperPlayer chooses randomly in round 2.

agent does HyperPlay HyperPlay-II

Round 1:
ask 45.04 ± 0.09 90.00 ± 0.00
wait 49.98 ± 0.10 49.91 ± 0.64
Round 2:
cut armed 50.60 ± 1.19 90.00 ± 0.00
cut unarmed 49.40 ± 1.19 0.00 ± 0.00

Table 3: Experimental score calculations during the Explod-
ing Bomb decision making process

5.2 Spy vs. Spy
A simple variant of the Bomb Maker game is to change which
direction the information flows. In the Bomb Maker game
the disarming agent could ask for the answer, in this version
the arming agent—who chooses which wire arms the bomb—
also decides whether to tell the other player which wire to cut.
Withholding this information carries a penalty of 20%. This
tests the value both players place on giving away information.

arming agent does HyperPlay HyperPlay-II

arm blue and tell 60.00 ± 0.15 20.00 ± 0.00
arm red and tell 60.04 ± 0.14 20.00 ± 0.00
arm blue and hide 39.98 ± 0.16 40.36 ± 1.22
arm red and hide 39.99 ± 0.14 39.45 ± 1.33

Table 4: Expected score calculations for the arming agent in
round one of the Spy vs. Spy decision making process

Table 4 shows experimental results in the form of calcu-
lated expected outcomes (the chosen action is bold). When
the original HyperPlayer is the arming agent it always tells to
avoid the penalty. HyperPlayer-II recognises that hiding this
information yields a better expected outcome.

5.3 Number Guessing
The original player reasoning with perfect information al-
ways announces it is ‘ready to guess’, but then guesses ran-
domly resulting in a 6.25% chance of guessing correctly. The
new player only guesses the number when all hypergames
agree on the result.
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Figure 3: The Number Guessing Results for HyperPlay-II.
The dark line represents the average payoff (with error bars
for 99% confidence interval). The light line shows increased
CPU resources required for increased player resources (note
the log-log scale).

Binary search is a perfect player here, able to guess after
four questions. The new player used in the experiments ap-
proached this score with a resource index of eight, as seen in
Fig. 3.

5.4 Banker and Thief
This game tests a player’s ability to keep secrets, ie. to value
withholding information from their opponent. The banker is
given ten $10 notes to deposit arbitrarily into two banks, and
is (randomly) assigned a ‘target’ bank. The banker scores all
the money left in that bank at the end of the game. The thief
can steal all the money from one bank and is scored by the
amount stolen provided it came from the target bank—which
they do not know. Guessing the wrong bank yields a score
of zero for the thief. The challenge for the banker is not to
reveal the target bank by over-depositing.

Fig. 4 shows that the original technique adopts a greedy
policy and places all of the money in the target bank, only
to have it stolen. The new technique, adequately resourced,
will deposit 40% of the money in the target bank, relying on
a greedy thief to attempt to steal the 60% in the other bank.

Figure 4: The Banker and Thief results

The new player reaches the optimal performance with a
resource index of eight. At this level it models the behaviour
of both roles correctly and avoids giving away the location of
the target bank.

5.5 Battleships In Fog
This turn-taking, zero-sum game was designed to test a
player’s ability to gather information and to be aware of infor-
mation collected by its opponent. Two battleships occupy the
same grid but cannot see each other—even when they occupy
the same square. A player can fire a missile to any square on
the grid, move to an adjacent square, or scan for their oppo-
nent. If they scan they will get the exact location, and their
opponent will know that they have been scanned.

The original player sees no value in scanning as all of the
hypergames already ‘know’ where the opponent is. It doesn’t
value moving after being scanned as it knows its opponent
always knows where it is. Its only strategy is to randomly fire
missiles giving it a 6.25% chance of a hit on a 4x4 board. The
new player, adequately resourced, will scan for the opponent
and fire a missile. When the original player was challenged
by the new player the difference was clear.

Figure 5: The Battleships In Fog results for HyperPlay-II ver-
sus HyperPlay

Note that a resource index of four is all that is required
for new player to have complete dominance over old in this
turn-taking game: HyperPlay has a 9.4% chance of winning
with a random shot (12.5% if it goes first, half that if it plays
second). This is reflected in the experimental results (Fig. 5).
Note also that HyperPlayer-II requires only three rounds to
finish the game: scan, noop, fire.

6 Conclusion
The experimental results show the value HyperPlay-II places
on knowledge, and how it correctly values information-
gathering moves by it and its opponents. It is able to collect
information when appropriate, withhold information from its
opponents, and keep its goals secret. The use of the Imperfect
Information Simulations is an efficacious and efficient tool
for reasoning with imperfect information. A HyperPlayer-II
was easily able to outperform an equally resourced Hyper-
Player in all of the experiments.
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We intend to explore additional features of the HyperPlay-
II technique as they pertain to general artificial intelligence
through the development of the HyperWorlds technique. This
will be a more generalised solution, capable of dealing with
imperfect information in real-world scenarios.

We also intend to implement the HyperPlayer-II for the
General Game Playing arena as a benchmark competitor for
other researchers to challenge in GDL-II games.
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Abstract

GDL-II is a logic-based knowledge representation
formalism used in general game playing to describe
the rules of arbitrary games, in particular those
with incomplete information. In this paper, we
show how model checking can be used to automat-
ically verify that games specified in GDL-II sat-
isfy desirable temporal and knowledge conditions.
We present a systematic translation of GDL-II to a
model checking language, prove the translation to
be correct, and demonstrate the feasibility of apply-
ing model checking tools for GDL-II games by four
case studies.

1 Introduction

The general game description language GDL, which has been
established as input language for general game-playing sys-
tems [Genesereth et al., 2005], has recently been extended
to GDL-II to incorporate games with nondeterministic ac-
tions and where players have incomplete/imperfect informa-
tion [Thielscher, 2010]. However, not all GDL-II descrip-
tions correspond to games, let alone meaningful, non-trivial
games. Genesereth et al. [2005] list a few properties that are
necessary for well-formed GDL games, including guaranteed
termination and the requirement that all players have at least
one legal move in non-terminal states. The introduction of in-
complete information raises new questions, e.g., can players
always know their legal moves in non-terminal states or know
their goal values in terminal states?

Temporal logics have been applied to the verification
of computer programs, and more broadly computer sys-
tems [Manna and Pnueli, 1992; Clarke and Emerson, 1981].
The programs are in certain states at each time instance, and
the correctness of the programs can be expressed as temporal
specifications. An example is the formula “AG¬deadlock”
meaning the program can never enter a deadlock state. Epis-
temic logics, on the other hand, are formalisms for reason-
ing about knowledge and beliefs. Their application in verifi-
cation was originally motivated by the need to reason about
communication protocols. One is typically interested in what

∗This paper is an extended version of a paper presented at the
ECAI’12 Computer and Games Workshop

knowledge different parties to a protocol have before, during
and after a run (i.e., an execution sequence) of the protocol.
Fagin et al. [1995] give a comprehensive study on epistemic
logic for multi-agent interactions.

Ruan and Thielscher [2011] have shown that the situation
at any stage of a game in GDL-II can be characterized by a
multi-agent epistemic (i.e., S5-) model. Yet, this result only
provides a static characterization of what players know (and
don’t know) at a certain stage.

Our paper extends this recent analysis with a temporal di-
mension, and also provides a practical method for verify-
ing temporal and epistemic properties using a model checker
MCK [Gammie and van der Meyden, 2004]. We present a
systematic translation from GDL-II into equivalent specifica-
tions in the model specification language of MCK. Verifying
a property ϕ for a game description G is then equivalent to
checking whether ϕ holds for the translation trs(G). The lat-
ter can be automatically checked in MCK.

The paper is organized as follows. Section 2 introduces
GDL-II and MCK. Section 3 presents the translation along
with possible optimizations and a proof of its correctness. Ex-
perimental results for four case studies are given in Section 4.
The paper concludes with a discussion of related work and
directions for further research.

2 Background

2.1 Game Description Language GDL-II

A complete game description consists of the names of (one
or more) players, a specification of the initial position, the le-
gal moves and how they affect the position and the players’
knowledge thereof, and the terminating and winning criteria.
The emphasis of game description languages is on high-level,
declarative game rules that are easy to understand and main-
tain. Background knowledge is not required—a set of rules
is all a player needs to know to be able to play a hitherto
unknown game. Meanwhile, GDL and its successor GDL-II
have a precise semantics and are fully machine-processable.

The GDL-II rules in Fig. 1 formalize a simple but famous
game called Monty Hall where a car prize is hidden behind
one of three doors and where a candidate is given two chances
to pick a door. Highlighted are the pre-defined keywords of
GDL-II. The intuition behind the rules is as follows. Line
1 introduces the players’ names (the game host is modelled
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1 role(candidate). role(random).

2 init(closed(1)). init(closed(2)).

3 init(closed(3)). init(step(1)).

4

5 legal(random,hide_car(?d)) <=

6 true(step(1)), true(closed(?d)).

7 legal(random,open_door(?d)) <=

8 true(step(2)), true(closed(?d)),

9 not true(car(?d)), not true(chosen(?d)).

10 legal(random,noop) <= true(step(3)).

11 legal(candidate,choose(?d)) <=

12 true(step(1)), true(closed(?d)).

13 legal(candidate,noop) <= true(step(2)).

14 legal(candidate,noop) <= true(step(3)).

15 legal(candidate,switch) <= true(step(3)).

16

17 next(car(?d)) <= does(random,hide_car(?d)).

18 next(car(?d)) <= true(car(?d)).

19 next(closed(?d)) <= true(closed(?d)),

20 not does(random,open_door(?d)).

21 next(chosen(?d)) <= does(candidate,choose(?d)).

22 next(chosen(?d)) <= true(chosen(?d)),

23 not does(candidate,switch).

24 next(chosen(?d)) <= does(candidate,switch),

25 true(closed(?d)), not true(chosen(?d)).

26 next(step(2)) <= true(step(1)).

27 next(step(3)) <= true(step(2)).

28 next(step(4)) <= true(step(3)).

29 sees(candidate,?d) <= does(random,open_door(?d)).

30 sees(candidate,?d) <= true(step(3)), true(car(?d)).

31

32 terminal <= true(step(4)).

33 goal(candidate,100) <= true(chosen(?d)),true(car(?d)).

34 goal(candidate, 0) <= true(chosen(?d)),

35 not true(car(?d)).

Figure 1: GMH - a GDL-II description of the Monty Hall
game adapted from [Thielscher, 2011].

by pre-defined role called random). Lines 2–3 define the
four features that comprise the initial game state. The pos-
sible moves are specified by the rules for legal: in step 1, the
random player must decide where to place the car (lines 5–6)
and, simultaneously, the candidate chooses a door (lines 11–
12); in step 2, random opens a door that is not the one that
holds the car nor the chosen one (lines 7–9); finally, the can-
didate can either stick to their earlier choice (noop) or switch
to the other, yet unopened door (line 14 and 15, respectively).
The candidate’s only percept throughout the game is to see
the door opened by the host (line 29) and where the car is
after step 3 (line 30). The remaining rules specify the state
update (rules for next), the conditions for the game to end
(rule for terminal), and the payoff for the player depending
on whether they got the door right in the end (rules for goal).

GDL-II is suitable for describing synchronous n-player
games with randomness and imperfect information. Valid
game descriptions must satisfy certain syntactic restrictions,
which ensure that all deduction problems “⊢” needed in Def-
inition 1 are finite and decidable; see [Love et al., 2006] for
details. In the following, we assume the reader to be famil-
iar with basic notions and notations of logic programming, as
can be found in e.g. [Lloyd, 1987].

A state transition system can be obtained from a valid
GDL-II game description by using the notion of the stable
models of logic programs with negation [Gelfond and Lifs-
chitz, 1988]. The syntactic restrictions in GDL-II ensure that
all logic programs we consider have a unique and finite stable

model [Love et al., 2006; Thielscher, 2010]. Hence, the state
transition system for GDL-II has a finite set of players, finite
states, and finitely many legal moves in each state. By G ⊢ p
we denote that ground atom p is contained in the unique sta-
ble model, denoted as SM(G), for a stratified set of clausesG.
In the following definition of the game semantics for GDL-II,
states are identified with the set of ground atoms that are true
in them.

Definition 1. [Thielscher, 2010] Let G be a valid GDL-II
description. The state transition system (R, s0, τ, l, u, I,Ω)
of G is given by

• roles R = {i | role(i) ∈ SM(G)};

• initial position s0 = SM(G ∪ {true(f) | init(f) ∈
SM(G)});

• terminal positions τ = {s | terminal ∈ s};

• legal moves l = {(i, a, s) | legal(i, a) ∈ s};

• state update function u(M, s) =
SM(G ∪ {true(f) | next(f) ∈ SM(G ∪ s ∪M)}),

for all joint legal moves M (i.e., where each role in R
takes one legal move) and states s;

• information relation I = {(i,M, s, p) | sees(i, p) ∈
SM(G ∪ s ∪M)};

• goal relation Ω = {(i, n, s) | goal(i, n) ∈ s}.

Note that a state s contains all ground atoms that are true
in the state, which includes the “fluent atoms” true(f) in,
respectively, {true(f) | init(f) ∈ SM(G)} (for the initial
state) and {true(f) | next(f) ∈ SM(G ∪ s ∪M)} (for the
successor state of s and M ), and all other atoms that can be
derived from G and these fluent atoms.

Different runs of a game can be described by developments,
which are sequences of states and moves by each player up to
a certain round. A player cannot distinguish two develop-
ments if the player has made the same moves and perceptions
in both of them.

Definition 2. [Thielscher, 2010] Let (R, s0, τ, l, u, I,Ω) be
the state transition system of a GDL-II description G, then a
development δ is a finite sequence

〈s0,M1, s1, . . . , sd−1,Md, sd〉

such that for all k ∈ {1, . . . , d} (d ≥ 0), Mk is a joint move
and sk = u(Mk, sk−1).

A terminal development is a development such that the last
state is a terminal state, i.e., sd ∈ τ . The length of a devel-
opment δ, denoted as len(δ), is the number of states in δ. By
M(i) we denote agent i’s move in the joint move M . Let δ|k
be the prefix of δ up to length k ≤ len(δ).

A player i ∈ R \ {random} cannot distinguish two de-
velopments δ = 〈s0,M1, s1, . . .〉 and δ′ = 〈s0,M

′
1, s

′
1 . . .〉

(written as δ ∼i δ
′) iff len(δ) = len(δ′) and for any 1 ≤ k ≤

len(δ) − 1:

• Mk(i) =M ′
k(i), and

• {p | (i,Mk, sk−1, p) ∈ I} = {p | (i,M ′
k, s

′
k−1, p) ∈ I}.
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2.2 Model Checker MCK

In this paper, we will use MCK, for “Model Checking Knowl-
edge”, which is a model checker for temporal and knowledge
specifications [Gammie and van der Meyden, 2004]. The
overall setup of MCK supposes a number of agents acting in
an environment. This is modelled by an interpreted system,
formally defined below, where agents perform actions accord-
ing to protocols. Actions and the environment may be only
partially observable at each instant in time. In MCK, differ-
ent approaches to the temporal and epistemic interaction and
development are implemented. Knowledge may be based on
current observations only, on current observations and clock
value, or on the history of all observations and clock value.
The last corresponds to synchronous perfect recall and is used
in this paper. In the temporal dimension, the specification for-
mulas may describe the evolution of the system along a sin-
gle computation, i.e., using linear time temporal logic; or they
may describe the branching structure of all possible computa-
tions, i.e., using branching time or computation tree logic. We
give the basic syntax of Computation Tree Logic of Knowl-
edge (CTL∗Kn).

Definition 3. The language of CTL∗Kn (with respect to a set
of atomic propositionsΦ), is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | Aϕ | Xϕ | ϕU ψ | Kiϕ.

The other logic constants and connectives ⊤,⊥,∨,→ are
defined as usual. In addition, Fϕ (read: finally, ϕ) is defined
as ⊤U ϕ, and Gϕ (read: globally, ϕ) is defined as ¬F¬ϕ.

The semantics of the logic can be given using interpreted
systems [Fagin et al., 1995]. Let S be a set, which we call
the set of environment states, and Φ be the set of atomic
propositions. A run over environment states S is a function
r : N → S × L1 × . . .× Ln, where each Li is called the set
of local states of agent i. These local states are used to con-
cretely represent the information on the basis of which agent i
computes its knowledge. Given run r, agent i, and time m,
we write ri(m) for the (i+1)-th component (in Li) of r(m),
and re(m) for the first component (in S). An interpreted
system over environment states S is a tuple IS = (R, π),
where R is a set of runs over environment states S, and
π : R×N → P(Φ) is an interpretation function. A point of
IS is a pair (r,m) where r ∈ R and m ∈ N.

Definition 4. Let IS be an interpreted system, (r,m) be a
point of IS , and ϕ be a CTL∗Kn formula. Semantic entail-
ment |= is defined inductively as follows:

• IS, (r,m) |= p iff p ∈ π(r,m);

• the propositional connectives ¬,∧ are defined as usual;

• IS, (r,m) |= Aϕ iff for all runs r′ ∈ R with r′(k) =
r(k) for all k ∈ [0..m], we have IS, (r′,m) |= ϕ;

• IS, (r,m) |= Xϕ iff IS, (r,m+ 1) |= ϕ;

• IS, (r,m) |= ϕU ψ iff ∃m′ ≥ m s. t. IS, (r,m′) |= ψ
and IS, (r, k) |= ϕ for all k ∈ [m..m′);

• IS, (r,m) |= Kiϕ iff for all points (r′,m′) with
ri(m) = r′i(m

′), we have IS, (r′,m′) |= ϕ.

We now describe the syntax and semantics of the input lan-
guage of MCK, following [van der Meyden et al., 2012].

Syntax of MCK Input Language
An MCK description consists of an environment and one or
more agents. An environment model represents how states
of the environment are affected by the actions of the agents.
A protocol describes how an agent selects an action under
certain environment.

Formally, an environment model is a tuple Me =
(Agt,Acts,Vare, Inite, P roge) whereAgt is a set of agents,
Acts is a set of actions available to the agents, Vare is a set
of environment variables, Inite is an initial condition, in the
form of a boolean formula over Vare, and Proge is a stan-
dard program for the environment e to be defined below.

Let ActVar(Me) = {i.a | i ∈ Agt, a ∈ Acts} be a set
of action variables generated for each model Me. An atomic
statement in Proge is of the form x := expr , where x ∈
Vare and expr is an expression over Vare ∪ ActVar(Me).

A protocol for agent i in environment Me is a tuple
Prot i = (PVar i,OVar i,Actsi,Prog i), where PVar i ⊆
Vare is a set of parameter variables, OVar i ⊆ PVar i is
a set of observable variables, Actsi ⊆ Acts, and Progi is a
standard program. An atomic statement in Prog i is either of
the form x := expr , or of the form ≪ a≫ with a ∈ Actsi.

A standard program over a set Var of variables and a set
A of atomic statements is either the terminated program ǫ or
a sequence P of the form stat1 ; . . . ; statm, where the statk
are simple statements and ‘;’ denotes sequential composition.

Each simple statement statk is an atomic statement in A;
or a nondeterministic branching statement of the form

if g1 → a1 [] g2 → a2 [] . . . [] gm → am fi;

or a nondeterministic iteration statement of the form

do g1 → a1 [] g2 → a2 [] . . . [] gm → am od;

where each ak is an atomic statement in A and each gk is a
boolean expressions over Var called guard.

Each atomic statement ak can be executed only if its cor-
responding guard gk holds in the current state. If several
guards hold simultaneously, one of the corresponding actions
is selected nondeterministically. The last guard gm can be
otherwise, which is shorthand for ¬g1 ∧ · · · ∧ ¬gm−1. An
if -statement executes once but a do-statement can be repeat-
edly executed.

Semantics of MCK Input Language
Based on a set of agents running particular protocols in the
context of a given environment, we can define an interpreted
system as follows.

Definition 5. A system model S is a pair (Me,Prot) with
Me = (Agt,Acts,Vare, Inite, P roge) and Prot a joint
protocol, i.e., with Prot i = (PVar i,OVar i,Actsi,Prog i)
for all i ∈ Agt.

Let a state with respect to S be an assignment s over the
set of variables Vare. A transition model over S is M(S) =
(S, I, {Oi}i∈Agt,→, V ), where S is the set of states of S; I
is the set of initial states s such that s |= Inite; Oi(s) =
s ↾ OVar i is the partial assignment given on the observable
variables of agent i, → is a transition relation on S×S;1 and

1More precisely, s → s′ if s′ is obtained by executing the paral-
lel program Proge ||i∈Agt Prog i on s; see [van der Meyden et al.,
2012] for details.
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a valuation function V is given by: for any boolean variable
x, x ∈ V (s) iff s(x) = true. 2

An infinite sequence of states s0s1... is an initialized com-
putation of M(S) if s0 ∈ I , sk ∈ S and sk → sk+1 for all
k ≥ 0. An interpreted system over S is IS(S) = (R, π),
where R is the set of runs such that each run r corresponds
to an initialized computation s0s1... with re(m) = sm, and
ri(m) = Oi(s0)Oi(s1) . . . Oi(sm); and π(r,m) = V (sm).

3 Translation from GDL-II to MCK

Our main contribution in this paper is a systematic transla-
tion from a GDL-II description G into an MCK description
trs(G). The translation is provably correct in that the game
model derived from G using the semantics of GDL-II satis-
fies the exact same formulas as the model that is derived from
trs(G) using the semantics of MCK. This will be formally
proved later in this section.

We use the GDL-II description of the Monty Hall game
from Fig. 1, denoted as GMH , to illustrate the whole process.
The translation trs can be divided into the following steps.

Preprocessing The first step is to obtain a variable-free
(i.e., ground) version of the game descriptionG. We can com-
pute the domains, or rather supersets of the domains, of all
predicates and functions of G by generating a domain depen-
dency graph from the rules of the game description, following
[Schiffel and Thielscher, 2007]. The nodes of the graph are
the arguments of functions and predicates in game descrip-
tion, and there is an edge between two nodes whenever there
is a variable in a rule of the game description that occurs in
both arguments. Connected components in the graph share
a (super-)domain. E.g., lines 2–6 in GMH give us the do-
main graph as follows, from which it can be seen that the
arguments of both closed() and hide car() range over the
domain {1, 2, 3}.

hide_car(?d)

1

2

3

closed(?d)

Once we have computed the domains, we instantiate all
the variables in G. This gives us all ground atoms, e.g.,
true(closed(1)), legal(random, hide car(1)), etc. Our
following translation operates on the variable-free version of
G, which for convenience we still refer to as G.

Deriving Environment Variables This step derives all the
environment variables Vare. Let AT be the set of ground
atoms in G. Define the following subsets of AT according
to the keywords: ATt = {h ∈ AT | h = true(p)}, ATn =

2For simplicity, we assume x is a boolean; this can be easily
extended to enumerated type variables. Suppose x is a variable with
type {e1, . . . , em}, we can use m booleans x.e1, . . . , x.em such
that x.ek ∈ V (s) iff s(x) = ek.

{h ∈ AT | h = next(p)}, ATd = {h ∈ AT | h = does(i, a)},
ATi = {h ∈ AT | h = init(p)} and ATs = {h ∈ AT |
h = sees(r, p)}.

Define t as follows:

• t(true(p)) = pold and t(next(p)) = p;

• t(init(p)) = p, and t(does(i, a)) = did i;

• t(p) = p for all p ∈ AT \ (ATt ∪ ATn ∪ ATd ∪ ATi).

Note that the ground atoms with keywords legal,
terminal, goal are all in AT\ (ATt∪ATn∪ATd∪ATi). The
set of environment variable Vare is then {t(p) | p ∈ AT}. For
convenience, we denote t(A) as {t(x) | x ∈ A}.

The type of each variable did i ∈ t(ATd) is the set of le-
gal moves of agent i plus two additional moves, INIT and
STOP, that do not appear in G, i.e., {a | legal(i, a) ∈ AT} ∪
{INIT, STOP}. The type of variables in Vare\t(ATd) is Bool.

Initial Condition This step specifies the environment ini-
tial condition Inite, which essentially is an assignment over
Vare. By using the semantics of G and ATi, we first com-
pute the initial state s0 (see Definition 1). Then for any
p ∈ ATi, we add boolean expression “t(p) == true” to
Inite as a conjunct; and for all did i ∈ t(ATd), we add
“did i == INIT”. For the rest, add “t(p) == true” if
p ∈ s0, and “t(p) == false” if p 6∈ s0.

Agent Protocols This step specifies the agents and their
protocols. The names of the agents are read off the role()
facts. Let Prot i = (PVar i,OVar i,Actsi,Prog i) be the
protocol of agent i, such that PVar i = Vare, OVar i =
{sees i p | sees i p ∈ t(ATs)} ∪ {did i} includes all the
variables representing i’s percept and i’s move, and Actsi =
{a | legal(i, a) ∈ G} includes all the legal moves of agent
i. Note that Actsi does not include the two special moves in
the protocol. The last componentProg i is a standard program
of the following format:

b e g i n do neg t e r m i n a l −>
i f l e g a l i a 1 −> <<a1>> [ ]

l e g a l i a 2 −> <<a2>> [ ]
. . .

f i
od end

This program intuitively means that if the current state
is not terminal, then a legal move is selected non-
determinstically by i. The statements between do · · · od are
executed repeatedly.

State Transition This step specifies the environment pro-
gram Proge. Each environment variable is updated corre-
sponding to the rules inG. The main task is to translate these
rules into MCK statements in a correct order. In GDL-II,
the order of the rules does not matter as the stable models
semantics always gives a unique model, but MCK uses the
imperative programming style in which the order of the state-
ments does matter; e.g., executing “x := 0;x := 1; ” results
in a different state than “x := 1;x := 0; ”. To take care of
the order, we separate the program Proge into three parts.

GIGA'13 Proceedings50



The first part is to update the variables in t(ATd) using the
following template (for agent i):

i f i . a1 −> d i d i := a1 [ ]
i . a2 −> d i d i := a2 [ ]
. . .
o t h e r w i s e −> d i d i := STOP

f i ;

The second part of Proge updates the variables in t(ATt)
and t(ATn ∪ ATs). For all pold ∈ t(ATt), an atomic statement
of the form pold := p is added to ensure that the value of p is
remembered before it is updated. For any atom h ∈ t(ATn ∪
ATs), suppose h = t(h) and Rules(h) is the set of rules in G
with head h:

r1 : h ⇐ b11, · · · , b1j
. . . . . . . . . . . .
rk : h ⇐ bk1, · · · , bkj

where bxy is a literal over AT.
Define a translation tt as follows:

• tt(does(i, a)) = did i == a;

• tt(not x) = neg tt(x); and other cases are same as t.

The translation of Rules(h) has the following form:

h := (tt(b11)∧· · ·∧tt(b1j)) ∨ · · · ∨ (tt(bk1)∧· · ·∧tt(bkj))

This simplifies to h := true if one of the bodies is empty.
Essentially, this is a form of the standard Clark [1978] Com-
pletion, which captures the idea that h will be false in the next
state unless there is a rule to make it true. The statements with
t(ATt) should be given before those with t(ATn ∪ ATs).

The third part deals the variables in t(AT \ (ATt ∪ ATn ∪
ATs ∪ ATd ∪ ATi)). Pick such an atom h and take Rules(h).
The literals in the body of these rules are translated differently
from the last case, as h refers to the current instead of the next
state. Define a new translation tt′ as follows:

• tt′(true(p)) = p and all other cases are identical to tt.

The translation of Rules(h) is similar to the above by re-
placing tt by tt′. The statements in the third part are ordered
according to the dependency graph. If h′ depends on h, then
the statement of tt′(h) must appear before that of tt′(h′). The
fact that GDL rules are stratified ensures that a desirable order
can always be found.

3.1 Optimizations

The above translation can be further optimized to make the
model checking more efficient by reducing the number of
variables.

(1) Using definitions. The variables in t(AT\ (ATt∪ATn∪
ATd ∪ ATi)) (refer to the third part of state transition step)
can be represented as definitions to save memory space for
variables. The assignment statement h := expr is swapped
with definition define h = expr. MCK replaces h using the
boolean expression expr during its preprocessing stage, so h
does not occupy memory during the main stage.

(2) Removing static atoms. We distinguish three special
kinds of atoms in GDL-II: those (a) appearing in the rules
with empty bodies, (b) never appearing in the heads of rules,

(c) only appearing in the rules with (a) and (b). Under the
GDL-II semantics, atoms in (a) are always true, those in (b)
are always false, and those in (c) do not change their value
during gameplay. Therefore we can replace them universally
with their truth values. E.g., consider the following rules:

succ(1,2). succ(2,3).

next(step(2)) <= true(step(1)), succ(1,2).

next(step(3)) <= true(step(2)), succ(2,3).

Both succ(1, 2), succ(2, 3) are always true, so we replace
them using their truth values. Then we can further simplify
this by removing the “true” conjuncts universally (and by
removing the rules with a “false” conjunct in the body):

next(step(2)) <= true(step(1)).

next(step(3)) <= true(step(2)).

(3) Converting booleans to typed variables. The atoms
in AT \ ATd are translated to booleans in our non-optimized
translation. There often are sets of booleans B such that at
each state exactly one of them is true. We can then convert
the booleans in B into one single variable vB with the type
{b1, . . . , b|B|}, where |B| is the size of B. This results in

a logarithmic space reduction on B: 2|B| is reduced to |B|.
Reusing the example just discussed, we can create a variable
vstep with type {1, 2, 3}.

3.2 Translation Soundness

The above completes the translation from G to trs(G). As
our main theoretical result, we show that our translation is
correct as follows: first the game model derived from a GDL-
II description G is isomorphic to the interpreted system that is
derived from its translation trs(G), then a CTL∗Kn formula
has an equivalent interpretation over these two models (i.e.,
having the same truth value).

We first extend the concept of finite developments in Defi-
nition 2 to infinite ones.

Definition 6 (Infinite Developments and GDL-II Game Mod-
els). Let 〈R, s0, t, l, u, I, g〉 be the state transition system
of G, and δ = 〈s0,M1, s1, . . . ,Md, sd〉 be a finite termi-
nal development of G, then an infinite extension of δ is an
infinite sequence 〈s0,M1, s1, . . . ,Md, sd,Md+1, sd+1, . . .〉
such that Md+k is the joint move where all players take a
special move STOP and sd+k = sd for all k ≥ 1.

Given a GDL-II description G, the game model GM(G) is
a tuple (D, {∼i |i ∈ Agt}), where D is the set of infinite
developments δ such that either δ is an infinite development
without terminal states, or δ is an infinite extension of a finite
terminal development; and∼i is agent i’s indistinguishability
relation defined on the finite prefixes of δ|k as in Definition 2.

For a given δ, let δ(k) denote the k-th state sk; δ(k)M the
k-th joint move Mk; and (δ, k) the pair (Mk, sk).

Definition 7 (Isomorphism). Let GM = (D, {∼i |i ∈ Agt})
be a game model and IS = (R, π) an interpreted system.
GM is isomorphic to IS if there is a bijection w between the
ground atoms of GM and the atomic propositions of IS , and a
bijection z betweenD and R satisfying the following: z(δ) =
r iff for any ground atom p: p ∈ δ(k) iff w(p) ∈ π(r, k), and
does(i, a) ∈ δ(k)M iff did i == a is true in (r, k).
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Intuitively, z associates a point (δ, k) in a development to a
point (r, k) in a run such that they coincide in the interpreta-
tion of basic and move variables. The following proposition
is the first step in showing the correctness of our translation.

Proposition 1. Given a GDL-II description G, let trs be
the translation from GDL-II to MCK, then the game model
GM(G) is isomorphic to the interpreted system IS(trs(G)).

Proof. (Sketch) Bijection w is obtained from the step of de-
riving variables in trs. Then define a map z from an arbitrary
infinite development δ to a run r, and show z is a bijection by
induction on the move-state pairs of δ. The base case is the
initial state, and in the inductive step, we first use the fact that
the moves Mk+1 chosen in the current state sk should all be
legal, and then derive that the corresponding legal variables
should be true in (r, k), then use the joint protocol of agents
to get the execution path with the corresponding moves in
Mk+1. Then the environment program guarantees that all
other variables are updated accordingly. For the technical
details of the proof we must refer to [Ruan and Thielscher,
2012].

Let w be a bijection from the set of ground atoms of G
to the set of atomic propositions of CTL∗Kn and w

−1 be
its inverse. The semantics of CTL∗Kn over GDL-II Game
Models can be given as relation GM(G), (δ,m) |= ϕ in
analogy to the semantics of CTL∗Kn over interpreted sys-
tems; e.g., GM(G), (δ,m) |= p iff w

−1(p) ∈ δ(m), and
GM(G), (δ,m) |= Kiϕ iff for all states (δ′,m′) of GM(G)
that satisfy δ|m ∼j δ

′|m′ we have GM(G), (δ′,m′) |= ϕ.

The following proposition then shows that checking ϕ
against a game model ofG is equivalent to checkingϕ against
the interpreted system of trs(G).

Proposition 2. Given a GDL-II description G, let trs be the
translation from GDL-II to MCK; ϕ a CTL∗Kn formula over
the set of atomic propositions in trs(G); and w, z the bijec-
tions from the isomorphism between GM(G) and IS(trs(G))
then:

GM(G), (δ,m) |= ϕ iff IS(trs(G)), (z(δ),m) |= ϕ.

This follows from Proposition 1 by an induction on the
structure of ϕ and completes the proof of our main result.

Our optimization techniques do not affect the isomor-
phism. So we can follow a similar argument as Proposition 1
and 2 to show that the optimized translation is also sound.

4 Experimental Results

We present experimental results on four GDL-II games from
the repository at www.general-game-playing.de: Monty Hall
(MH), Krieg-TicTacToe (KTTT), Transit, and Meier. MCK
(v1.0.0) runs on Intel Core i5-2500 CPU 3.3 GHz and 8GB
RAM with GNU Linux OS 2.6.32.

Temporal and epistemic specifications The temporal
logic formulas can be used to specify the objective aspects
of a game. The following three properties represent the basic

requirements from [Genesereth et al., 2005]. (Let Legali and
Goali be the set of legal moves and goals of i respectively.)

AF terminal (1)

AG(¬terminal →
∧

i∈Agt

∨

p∈Legali

p) (2)

∧

i∈Agt

¬AG¬goal i 100 (3)

Property (1) says that the game always terminates. Prop-
erty (2) expresses playability: at every non-terminal state,
each player has a legal move. Property (3) expresses fairness:
every player has a chance to win, i.e., eventually achieving the
maximal goal value 100. These properties apply both to GDL
and GDL-II games. The next three properties concern the
subjective views of the players under incomplete-information
situations, hence are specific to GDL-II games.
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Property (4) says that once the game has terminated, all
players know this. Property (5) says that any player always
knows its legal moves in non-terminal states; and property (6)
says that in a terminal state, all players know their outcome.

Table 1 shows the runtimes on five translations. The first
four translations use all three optimization techniques on the
four games. The last translation Meier′ is partially optimized
with the third technique applied only for the variables in
t(ATs). As a consequence, Meier′ uses 126 booleans that in
the fully optimized Meier are represented by 4 enumerated
type variables of a size equivalent to about 22 booleans, i.e.,
the state space of Meier is only (1/2)104 of the state space
of Meier′. The time is measured in seconds and “NA” means
MCK does not return a result after 10 hours. A comparison
of the two translations of Meier shows that our optimization
can be very effective. Somehow surprisingly, the result shows
that the game Meier is not well-formed as it does not satisfy
property (1). The last three properties were also checked in
[Haufe and Thielscher, 2012], but we were able to get results
on Transit and Meier that are beyond the expressivity of their
approach. Note that although we only show the experiment
results for four games, our approach is not a specialised so-
lution for these four games only. It is general enough to deal
with all GDL games.

MH KTTT Transit Meier Meier′

(1) 0.47 1864.81 12.17 6.41 8079.52
(2) 0.48 3528.14 7.54 9.75 13192.91

(3) 0.67 303.04 11.02 17.06 15056.29

(4) 0.60 22847.06 14.91 7.00 NA
(5) 0.56 22643.12 14.39 23.28 NA

(6) 0.43 5498.03 45.15 11.01 NA

Table 1: Experimental results on 5 translations.
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5 Related Work and Further Research

There are a few papers on reasoning about games in GDL
and GDL-II. Haufe et al. [2012] use Answer Set Program-
ming for verifying temporal invariance properties against a
given game description by structural induction. Haufe and
Thielscher [2012] extend [Haufe et al., 2012] to deal with
epistemic properties for GDL-II. Their approach is restricted
to positive-knowledge formulas while ours does not and can
handle more expressive epistemic and temporal formulas.

Ruan et al. [2009] provide a reasoning mechanism for
strategic and temporal properties but it is restricted on the
original GDL for complete information games. Ruan and
Thielscher [2011] examine the epistemic logic behind GDL-
II and in particular show that the situation at any stage of
a game can be characterized by a multi-agent epistemic (i.e.,
S5-) model. Ruan and Thielscher [2012] provide both seman-
tic and syntactic characterizations of GDL-II descriptions in
terms of a strategic and epistemic logic, and show the equiv-
alence of these two characterizations. The current paper does
not handle strategies but is able to provide practical results by
using a model checker.

Kissmann and Edelkamp [2011] instantiate GDL descrip-
tions and utilise BDDs to construct a symbolic search algo-
rithm to solve single- and two-player turn-taking games with
complete information. This is related to our work in the sense
that we also do an instantiation of GDL descriptions and
uses the BDD-based symbolic model checking algorithms of
MCK to verify properties. But our approach is more general
and also deals with games with incomplete information.

Other existing work is related to this paper in terms of deal-
ing with declarative languages. Chang and Jackson [2006]

show the possibility of embedding declarative relations and
expressive relational operators into a standard CTL symbolic
model checker. Whaley et al. [2005] propose to use Datalog
(which GDL is based upon) with Binary Decision Diagrams
(BDDs) for program analysis.

We conclude by pointing out some directions for further
research. Firstly our results suggest that the optimization we
have applied allows us to verify some formulas quickly, but
it is still difficult to deal with a game like Krieg-TicTacToe.
However a hand-made version of Krieg-TicTacToe (with
more abstraction) in MCK does suggest that MCK has no
problem to cope with the amount of reachable states of Krieg-
TicTacToe. So the question is, what other optimization tech-
niques can we find for the translation? Secondly, we would
like to investigate how to make MCK language more ex-
pressive by allowing declarative relations such as shown in
[Chang and Jackson, 2006]. Our current translation maps
GDL-II to MCK’s input and MCK internally encodes that
into BDDs for symbolic checking. So a more direct map from
GDL-II to BDDs may result in a gain in efficiency. Thirdly,
we would like to explore the use of bounded model checking
to check if a property holds for a partial game model. MCK
has implemented some bounded model checking algorithms,
but they are not yet particularly effective in dealing with per-
fect recall semantics that we used in our investigation. We
leave all these for future work.
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Abstract
The variety of open-source GDL reasoners avail-
able to newcomers to General Game Playing (GGP)
lowers the technical barrier of entering the field.
This variety, however, also makes it more compli-
cated to decide on a fitting reasoner for a given
GGP project, considering the project’s objectives,
ambitions, and technical constraints. This paper
gives an overview of available GDL reasoners, dis-
cusses their main pros and cons, and most im-
portantly quantifies their relative reasoning perfor-
mance on a number of games (in terms of nodes
searched per second), showing an order of magni-
tude difference in some cases. We similarly quan-
tify the performance difference between game-
playing systems specifically designed for playing
a single game on the one hand and general game-
playing systems on the other, witnessing up to sev-
eral orders of magnitude difference.

1 Introduction
Games have played an important role as a testbed for ad-
vancements in the field of artificial intelligence ever since
its inception. The focus was initially on developing gen-
eral problem-solving systems, but gradually shifted towards
building specialized high-performance game-playing systems
capable of matching wits with the best humans. These highly
specialized systems were engineered and optimized towards
playing a single particular game at a world-class level. Ex-
amples of such game-playing systems achieving fame are
CHINOOK (checkers), DEEPBLUE (chess), and LOGISTELLO
(Othello) [Schaeffer and van den Herik, 2002].

The auspicious effect of increased computing speed was
recognized early as deeper lookahead could greatly improve
programs’ playing strength. Thus, in addition to develop-
ing pure algorithmic enhancements much effort was invested
in developing compact and efficient data-structures and in-
ventive code optimization tricks for the games at hand (as
a case in point, ”magic bitboards” in chess allow the board
representation to be transformed from being row-aligned to

∗The support of the Icelandic Centre for Research (RANNIS) is
acknowledged.

diagonally-aligned simply by performing a couple of care-
fully chosen multiplications — an extremely useful fea-
ture for efficiently generating the legal moves of the sliding
pieces). It is not uncommon for specialized game-playing
programs to explore millions of nodes per second (nps) on
modern computer hardware, even on a single CPU. Massive
parallel processing has the potential of scaling this already
impressive performance up by a few orders of magnitude.

The International General Game Playing Competi-
tion [Genesereth et al., 2005] renewed interest in more gen-
eral approaches to computer game playing. In General Game
Playing (GGP), as opposed to creating highly-efficient game-
playing agents for playing one specific game, the goal is to
create agents capable of autonomously learning how to play
a wide variety of games skillfully. The games can take var-
ious disparate shapes and forms. The principal game rules,
such as what the goal of the game is and how the pieces
move, are communicated to the GGP agents using a language
called Game Description Language (GDL). The responsi-
bility is then on the agents to learn —without any human
intervention— strategies for playing that game well. Obvi-
ously such general game-playing systems cannot be expected
to achieve the same level of performance as their game-
specific counterparts. It is nonetheless important for them to
be as efficient as possible, not the least because the learning
and reasoning mainly takes place in real-time during play.

In GGP, as any other new research field, it is important
to attract new practitioner. One potential obstacle of entry is
the sizable software infrastructure needed for having simply a
functional GGP agent. Fortunately, the community provides
software tools for lowering this technical barrier. For exam-
ple, there are several open-source GGP agents available, on-
line game servers for playing other agents, as well as various
GDL reasoners that can be plugged directly into new projects.
This frees newcomers from having to implement their own
GDL interpreters, allowing them instead to concentrate on
any of the other challenging aspects of GGP.

In this paper we give an overview of available GDL rea-
soners, discuss their main pros and cons, and quantify their
relative reasoning efficiency on a number of games. We hope
that this work not only provides added insights into how to
further improve GDL reasoners’ efficiency, but also makes
it easier for both new and old GGP practitioners to select a
proper reasoner for their projects or tasks at hand. We fur-
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1 (role xplayer)
2 (role oplayer)
3

4 (init (cell 1 1 b))
5 (init (cell 1 2 b))
6 ...
7 (init (control xplayer))
8

9 (<= (legal ?w (mark ?x ?y))
10 (true (cell ?x ?y b))
11 (true (control ?w)))
12 (<= (legal oplayer noop)
13 (true (control xplayer)))
14 ...
15 (<= (next (cell ?m ?n x))
16 (does xplayer (mark ?m ?n))
17 (true (cell ?m ?n b)))
18 (<= (next (control oplayer))
19 (true (control xplayer)))
20 ...
21 (<= (row ?m ?x)
22 (true (cell ?m 1 ?x))
23 (true (cell ?m 2 ?x))
24 (true (cell ?m 3 ?x)))
25 ...
26 (<= (line ?x)
27 (row ?m ?x))
28 (<= (line ?x)
29 (column ?m ?x))
30 (<= (line ?x)
31 (diagonal ?x))
32 ...
33 (<= (goal xplayer 100)
34 (line x))
35 (<= (goal xplayer 0)
36 (line o))
37 ...
38 (<= terminal
39 (line x))

Figure 1: A partial Tictactoe GDL description.

thermore provide initial benchmarks quantifying the (search
speed) performance gap between game-specific and general
game-playing systems, showing the efficiency of GGP sys-
tems leaving much to be desired.

The paper is organized as follows. Section 2 gives a brief
background of GDL and common approaches for interpreting
it. This is followed in Section 3 by an overview of publicly
available GDL reasoners. Their efficiency is evaluated in Sec-
tion 4, and, finally we conclude and discuss future work.

2 Game Description Language (GDL)
Games in GGP are described in a first-order-logic based
language called Game Description Language (GDL) [Love
et al., 2008]. It is an extension of Datalog permitting
negations and function constants. The extensions are re-
stricted such that the language still has an unambigu-
ous declarative interpretation. The expressiveness of GDL
permits a large range of deterministic perfect-information

simultaneous-move games with arbitrary number of adver-
saries to be described. Turn-based games are modeled by
having the players that do not have a turn return a special no-
op move. Special relations have a game-specific semantic,
such as for describing the initial game state (init), detecting
(terminal) and scoring (goal) terminal states, and for gener-
ating (legal) and playing (next) legal moves. A game state is
represented by the set of facts that are true in the state (e.g.,
cell(1, 1, b)). Figure 1 shows a partial GDL description for
the game Tictactoe. The official GDL specification [Love et
al., 2008] defines the language’s syntax and semantics.

The three main approaches used by GGP agents for inter-
preting GDL game descriptions are: 1) using a custom-made
GDL interpreter; 2) translating GDL to Prolog and then use
an off-the-shelf Prolog engine to handle the interpretation; or,
3) translate GDL into some other alternative representation
that the agents knows how to manage.

The first approach of using a custom-made GDL interpreter
is probably the most straightforward for integrating a GDL
reasoner into a new GGP project. Building a robust and ef-
ficient GDL interpreter from scratch is of course a highly
involved task. However, there already exists several GDL
interpreters written in popular imperative programming lan-
guages. These interpreters are though still in their infancy
and tend to be quite inefficient (as we see later). Although
they are typically modeled after Prolog interpreters, for exam-
ple, by using SLD-NF (Selective Linear Definite–Negation
as Failure) resolution [Apt and van Emden, 1982], they still
lack many of the standard optimization techniques commonly
found in Prolog interpreters. We evaluate three custom-made
GDL interpreters, one written in C++ and two in Java.

The second approach of translating GDL game descrip-
tions to Prolog and offload the interpretation to an (highly-
optimized) off-the-shelf Prolog engine is most popular among
established GGP agents. The translation of GDL to Prolog is
mostly straightforward as both languages are first-order-logic
based and share a similar syntax, however, their semantics
differ somewhat. In particular, the ordering of clauses is in-
consequential for the semantic in GDL (which is, as Datalog,
fully declarative), whereas clause ordering is essential for de-
termining a program’s semantic in Prolog. Thus some precau-
tions are necessary during the translation process to ensure
that the correct semantic interpretation of GDL is preserved.
For example, one must make certain that negated clauses in
generated Prolog implication rules are ordered such that their
variable arguments are surely grounded before execution. In
contrast to the first approach, the integration and interfacing
of a Prolog engine into a GGP project can be a somewhat
more involved task. For example, not all Prolog engines pro-
vide a convenient or efficient application-programming inter-
face to programs written in an imperative programming lan-
guage. Another downside is that most publicly available Pro-
log engines are non-reentrant and as such cannot be safely
used by host programs using thread-based parallelism. We
evaluate three GDL reasoners using Prolog as a backend, one
written in Prolog, another in C++, and the third in Java.

The third approach is to translate the GDL game de-
scription into an alternative representation (other than Pro-
log), efficiently managed by the GGP agent. A few GGP
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agents do this, for example by translating GDL into propo-
sitional nets [Schkufza et al., 2008] or binary decision dia-
grams [Bryant, 1985]. Whereas this can result in highly ef-
ficient reasoners for particular games, the main drawback is
that such translations typically require the grounding of all
possible GDL logic clauses, often leading to an exponential
blowup of the size of the representation. Such an approach is
thus feasible for only a subset of (typically the more simpler)
games. These GGP agents do thus also rely on one of the two
aforementioned approaches as a fallback. We chose to ex-
clude these non-general reasoners in our comparison study;
however, it would be interesting to include them in a more
comprehensive future study.

3 Reasoners
This section catalogs available GDL reasoners.

3.1 CadiaPlayer
The CADIAPLAYER [Björnsson and Finnsson, 2009; Finns-
son and Björnsson, 2008] agent is developed by the CADIA
research lab at Reykjavik University. It is written in C++,
but uses YAP Prolog [Costa et al., 2012] as a backend for
GDL game state reasoning. Although the agent is under con-
stant development, the lowest level the code for interfacing
the Prolog backend has not changed much since 2007.

The translation from GDL into Prolog is straightforward:
Apart from syntactical changes the only change is that nega-
tive literals in the rules bodies are moved to the end. This is
done to ensure safe evaluation of negations in Prolog, which
uses a left to right evaluation and negation-as-failure seman-
tics. For example, the following rule from Tictactoe

1 (<= (next (cell ?m ?n x))
2 (does xplayer (mark ?m ?n))
3 (true (cell ?m ?n b)))

is transformed to

1 next(cell(M, N, x)) :-
2 does(xplayer, mark(M, N)),
3 state(cell(M, N, b)).

As a consequence, these Prolog rules can only be used
to reason about one particular state at a time. To set this
state, facts of the form state(F) are asserted in Prolog –
one for each fluent F in the current state. Similarly, to set
the moves that the players have done, CADIAPLAYER as-
serts facts of the form does(R,M). This allows to reason
about the game. For example, to compute the legal moves
of xplayer in the current state, CADIAPLAYER executes
the query findall(M,legal(xplayer,M),Moves). To
change the state, the facts state(F) have to be retracted
again before asserting the facts for the new state.

Asserting and retracting facts from the Prolog rules is a
somewhat expensive operation. Depending on the Prolog in-
terpreter that is used, it requires to actually compile the facts
in to machine code of a Warren Abstract Machine [Warren,
1983]. However, this machine code is optimized for fast
reasoning, such that inferences that involve lookup of facts
from the current state will benefit from this approach. In fact,

by taking advantage of YAP Prolog’s indexing mechanism,
lookup of facts can often be done in a small constant time,
i.e., independent on the size of state.

3.2 FluxPlayer
FLUXPLAYER [Schiffel and Thielscher, 2007] was developed
by the Computational Logic group at Technische Universität
Dresden. It is written entirely in ECLiPSe Prolog [ecl, 2013],
except for a small part handling the communication which is
written in Java.

Consequently, FLUXPLAYER also converts the GDL rules
into Prolog. However, the approach differs from CADIA-
PLAYER’s by not needing to assert and retract facts. Instead
states and players’ moves are modeled as Prolog lists. Each
predicate in the game rules that depends on the state or on
the players’ moves is extended by additional arguments. For
example, the following rule from Tictactoe

1 (<= (next (cell ?m ?n x))
2 (does xplayer (mark ?m ?n))
3 (true (cell ?m ?n b)))

is transformed to

1 next(cell(M, N, x), State, Moves) :-
2 does(xplayer, mark(M, N), Moves),
3 true(cell(M, N, b), State).

The two predicates true(F, State) and
does(R, M, Moves) are implemented similar to Pro-
log’s built-in member predicate.

The advantage of this approach is that modification and
storing of Prolog lists (and hence states) is efficient compared
to asserting facts. However, the lookup time on a list is linear
in its size. Thus, inferences that involve lookup of facts in a
state can be more expensive than with asserted facts.

In addition to this standard transformation of GDL rules
into Prolog rules, FLUXPLAYER comes with a multitude of
game analysis algorithms (see, e.g., [Haufe et al., 2012;
2011]), some of which are used to modify the game rules to
decrease inference time. In the interest of a fair comparison
of the reasoners, these improvements were turned off for the
experiments presented in this paper.

3.3 JavaProver
JAVAPROVER [Halderman et al., 2006] was written by stu-
dents in Stanford University’s cs227b General Game Playing
course. It was provided by Stanford University as a reference
player. JAVAPROVER is also embedded in GameController
and GGPServer [Günther et al., 2013], two popular programs
for running matches and tournaments between general game
players.

JAVAPROVER is a custom implementation of SLD-NF res-
olution for GDL. As the name suggests, JAVAPROVER is writ-
ten in Java. It does not contain optimizations such as indexing
or tabling that can be found in off-the-shelf Prolog systems.

For the experiments we used JAVAPROVER embedded in
the GameController code. This added a small overhead to
the runtime (1–2%), but allowed to reuse the code of the test-
driver (see section 4.1) because GameController allows for an
easy way to exchange the GDL reasoner.
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3.4 JavaEclipse
JAVAECLIPSE is essentially an adapter allowing the Game-
Controller code-base to access a simplified version of FLUX-
PLAYER through ECLiPSe Prolog’s Java interface. There-
fore, the actual reasoner is very similar to FLUXPLAYER.
However, the interface uses socket communication between
the Java and ECLiPSe processes which incurs overhead, in-
cluding having to encode/decode all Prolog clauses passed
over the interface. A similar approach is used by the CENTU-
RIO player [Möller et al., 2011].

3.5 C++Reasoner
C++REASONER [Schultz et al., 2008] was implemented by
students the General Game Playing course at Technische Uni-
versität Dresden in 2008. Similar to JAVAPROVER, it is a cus-
tom implementation of SLD-NF resolution, completely im-
plemented in C++.

3.6 GGPBaseProver
The ggp-base project [Schreiber, 2013] is an open source
project with the goal of providing a common infrastructure
for general game player. GGPBASEPROVER uses the SLD-
NF resolution part of ggp-base embedded in the GameCon-
troller code base. As with JAVAPROVER, this embedding in-
curs some small runtime overhead (1 to 2% depending on the
game), but allows to reuse the code of the test-driver.

3.7 Others
We chose not to include in this study specialized GDL rea-
soners that translate GDL into an alternative representation as
they are typically applicable for only a small subset of games
(it would be of interest to get insights into their efficiency and
expressiveness, but it’s left as future work). We list below the
reasoners omitted because of this or some other reason.

JOCULAR [joc, 2007] is another Java-based player that
uses its own resolution based reasoner. However, it crashes
for Amazons and has errors for some of the other games.

The GGP-Base Project [Schreiber, 2013] also provides an
reasoner based on propositional networks [Schkufza et al.,
2008]. This approach can speed up reasoning by several or-
ders of magnitude. However, it requires to propositionalize
the game description. In general, this results in a significant
increase of representation size, to the extend that proposition-
alizing games is only feasible for a small subset of games. For
example, with the basic approach provided by ggp-base, only
2 out of the 12 games we tested could be propositionalized
in a reasonable amount of time (5 minutes) and without run-
ning out of memory (2 GB). Since the approach is currently
only usable for some of the games, we excluded it from the
experiments.

GADELAC [Saffidine and Cazenave, 2011] is a com-
piler for GDL that generates a forward chaining reasoner in
OCAML. One of the main differences to the other special-
ized approaches [Schreiber, 2013; Kissmann and Edelkamp,
2011] is that it does not require to propositionalize the game
description. The forward chaining reasoner that is produced
from a game description is similar in size to the original game
description. In [Saffidine and Cazenave, 2011] the authors

reported an improvement of up to 50% in number of random
simulations of a game per time interval compared to a YAP
Prolog-based reasoner. However, the results were mixed. For
some games GaDeLaC performed considerably worse than
YAP Prolog. We did not include the compiler in our com-
parison because our test-driver framework does not currently
support the OCAML programming language; however, we
plan to do so for future comparisons.

TOSS [Kaiser and Stafiniak, 2013] is a system in which
games are defined using mathematical structures and struc-
ture rewriting rules. [Kaiser and Stafiniak, 2011] show how
to translate GDL game descriptions into the Toss formalism.
However, the translation depends on certain structures in the
game rules and it might incur a prohibitively large increase in
the size of the state representation.

GAMER [Kissmann and Edelkamp, 2011] is a general
game player that propositionalizes game descriptions and use
those propositional descriptions to solve games by classifying
game states using binary decision diagrams [Edelkamp and
Kissmann, 2008]. As reported in [Kissmann and Edelkamp,
2011], this can increase the performance by as much as two
orders of magnitude. However, not all games can be proposi-
tionalized within reasonable time and memory constraints.

Kevin Waugh [Waugh, 2009] developed GDLCC, a com-
piler that transforms GDL rules into a game specific C++ li-
brary for performing state manipulation tasks. The generated
C++ library implements a game specific backward-chaining
reasoner that does not require a propositionalized game de-
scription. The author reports speed-up factors of up to 18
for state generations per second on some games compared to
YAP Prolog. However, reportedly the system did not work for
game descriptions with recursive terms and compilation time
for the generated C++ code could be long for some games.
A similar approach compiling GDL into Java code is imple-
mented in the CENTURIO player [Möller et al., 2011]. The
authors report speed-up factors of up to three compared to
the Prolog based version of CENTURIO.

4 Empirical Evaluation
In here we empirically evaluate the GDL reasoners. We
describe the experimental setup followed by a performance
comparison of the different reasoners, both in absolute and
relative terms. This is reported in two separate subsections
because the former comparison is mainly helpful for con-
trasting the GGP reasoners efficiency with their game-specific
counterparts, whereas the latter is mostly helpful for gain-
ing insights into the different GDL reasoning approaches. Fi-
nally, we also briefly report on the reasoners’ robustness.

4.1 Experimental Setup
We built a test driver module for running homologous exper-
iments across the different reasoners. The driver implements
basic iterative-deepening minimax (MM) and Monte-Carlo
(MC) search algorithms, as well as providing functionality for
reading pre-recorded game records and for gathering search
statistics. It was designed to be as low overhead as possi-
ble and with only minimal logic embedded (simplest possi-
ble implementations of MM and MC), such that the perfor-
mance timing would be solely focused on the GDL reasoning
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part. For example, neither minimax nor Monte-Carlo back up
the values of the terminal states, however, minimax detects
whether all leafs are terminal as in such cases further depth
iterations are unnecessary. The driver updates the game state
in between searches with the move from the pre-recorded
game (as opposed to the best move based on the search) to en-
sure that the same benchmarking data is used for all reasoners
throughout an entire match. The exact implementation of the
test driver can differ slightly between reasoners to accommo-
date their different game-logic interfaces and programming
languages; the test-driver implementations are, however, all
functionally equivalent. Figure 2 gives a pseudo-code outline
of the driver (the source code will be made available online).

1 boolean mm(Game g, int depth) {
2 if ( timeout() ) { return false; }
3 if (g.isTerminal()) {g.goals(); return true;}
4 if ( depth <= 0 ) { return false; }
5 boolean isTerminal = true;
6 for ( Move move : g.getActions() ) {
7 g.make(move);
8 isTerminal = mm(g, depth-1) && isTerminal;
9 g.retract(move);

10 if ( timeout() ) { return false; }
11 }
12 return isTerminal;
13 }
14

15 void algorithmIterativeDeepeningMM(State g) {
16 boolean isTerminal = false;
17 for (int d=0; !timeout()&&!isTerminal; ++d) {
18 isTerminal = mm(g, d);
19 }
20 }
21

22 void randomSimulation(Game g) {
23 if ( timeout() ) { return; }
24 if (g.isTerminal()) {g.goals(); return;}
25 List<Move> moves = g.getActions( );
26 int i = Random.nextInt(moves.size());
27 g.make(moves.get(i));
28 randomSimulation(g);
29 g.retract(moves.get(i));
30 }
31

32 void algorithmMonteCarlo(Game g) {
33 while ( !timeout() ) {
34 randomSimulation(g);
35 }
36 }
37

38 void runTest(Game g, Algorithm algorithm) {
39 List<String> record = readGameRecord();
40 g.reset();
41 for ( String moveStr : record ) {
42 algorithm( g );
43 Move move = g.strToMove( moveStr );
44 g.make( move );
45 }
46 }

Figure 2: The outline of the test-driver.

A test-suit of games consisting of the following two-player
games is used for the experiments: Amazons, Breakthrough,
Chinese checkers, Connect4, Othello, Skirmish, and Tictac-
toe. The complexity of the games span a wide spectrum and
are thus representative of the type of games one would expect
to encounter in GGP competitions (they have all been used in
previous GGP competitions in one form or another). Chinese
checkers can also be played with only a single player or as a
multi-player game with up to six players. We include the 1, 3,
4, and 6 player variants in our test-suit as well as a 6-player
simultaneous move variant. The games’ GDL descriptions
are all available on the Dresden GGP server [Schiffel, 2013].

For each game 100 complete match records were pre-
recorded and used for the testing. Three experiments
were executed for each reasoner: the first two using a
time-limited iterative-deepening minimax (MM) and a time-
limited Monte-Carlo search (MC), respectively, and then a
third using a fixed-depth minimax search. Time limits for
MM and MC were set to 60 seconds. The depth limit for
the fixed-depth minimax search was determined on a per-
game basis ranging from as low as 1 for Amazons up to 6
for Tictactoe. The former two experiments allow us to com-
pare the relative performance of the different reasoners under
tournament-like conditions, whereas the last experiment also
helps with evaluating the correctness of the reasoners, as their
node count statistics should (for the most part) match.

All experiments were run on a Linux (Ubuntu 12.04) server
using a single-core of a quad-core 2.5 GHz Intel Xeon CPU
(with 2 x 3 MB L2 cache and 1333 Mhz FSB). The com-
puter had 4 GB of memory, but the computations were first
and foremost CPU bound. Java 1.6 (OpenJDK), Gcc 4.6.3,
YAP Prolog 5.1.1, and ECLiPSe Prolog 6.0#188 were used
for compiling (and running) the programs.

4.2 Absolute Performance
We first establish a baseline for each game/algorithm com-
bination. The baseline is the best (highest) score achieved
by any reasoner for that particular combination and is used
in subsequent graphs for normalizing all scores to the range
[0, 1]. Table 1 shows the baseline values.

First, it is worth noting how slow even the fastest GDL
reasoners are, with a typical search speed measured in mere
thousands of nodes per second (nps). For contrast, a typi-
cal search speed of programs specifically designed for play-
ing these particular games would be measure in hundreds of
thousand or even millions of nodes per second, resulting in a
difference of at least two to three orders of magnitude. For a
concrete performance comparison we implemented (in Java)
game-specific programs for two of the games, Breakthrough
and Connect4, confirming our intuition as shown in Table 2.

Second, we note that the nps counts are substantially lower
for the MC-based search than the MM-based one. This is ex-
pected, and explained by the generation of all legal moves
taking substantially longer time than playing a single move
and updating the game state accordingly. In MM-based
search, where all generated legal moves are explored at inte-
rior nodes, there are many state updates for each legal moves
generation, whereas in MC, where only a single (random)
move is explored, there is only one state update per legal
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Table 1: Running speed in nodes per second (nps) of the
fastest GDL reasoner for each game/algorithm: FLUXPLAY-
ER was the fastest for all entries except the asterisk-marked
ones, where CADIAPLAYER was the fastest.

Game MM MC Ratio
(nps) (nps)

Amazons 4,877 454∗ 20.6
Breakthrough 3,783 2,638 1.4
Chinese checkers 1p 6,249 4,538 1.4
Chinese checkers 2p 4,340 3,193 1.4
Chinese checkers 3p 3,195 2,464 1.3
Chinese checkers 4p 2,018 1,511∗ 1.3
Chinese checkers 6p 1,581 1,500∗ 1.1
Chinese checkers 6p-sim 2,400 1,023 2.3
Connect4 1,780 933∗ 1.9
Othello-2007 747∗ 258∗ 2.9
Skirmish 3,327 1,391 2.4
Tictactoe 14,471 11,988 1.2

Table 2: Running speed in nodes per second (nps) of the
fastest GDL reasoner vs. game-specific reasoner.

Game Exp. Specific GDL Ratio
(nps) (nps)

Breakthrough MM 5,543,666 3,783 1,465
Connect4 MM 5,072,668 1,780 2,850
Breakthrough MC 709,230 2,638 269
Connect4 MC 2,530,426 933 2,712

moves generation. We see from column three in Table 1 that
this ratio may differ considerably from one game to the next.
Two factors contribute to this: the average branching factor of
the game tree (the higher the branching factor the higher the
ratio), and the relative time complexity of legal moves gener-
ations compared to state updates. The speed difference ratio
is particularly profound in the game Amazons, which is not
surprising given the game’s high branching factor.

The performance of Prolog based reasoners can be im-
proved by optimizing the Prolog clauses that are generated
from the GDL rules. To our knowledge, FLUXPLAYER is the
only player currently doing this. The optimizations regarding
game rules in FLUXPLAYER consist mainly of precomput-
ing and tabling of static predicates (those predicates that do
not depend on the current state of the game) and removing
unnecessary fluents from the state representation (e.g., some
versions of Chinese checkers contain cells on the board that
no piece can be moved to). As we said, these optimization
were turned off for the experiments. If switched on, these im-
provements result in up to two-fold speedup for some games.
However, this does not change the huge performance gap be-
tween game-specific programs and general game players.

4.3 Relative Performance
Next we turn our attention to the relative performance of the
reasoners. Figure 3 depicts the result for MM- and MC-
search. The current trend in GGP is to use MC-based agents,

making the latter graph more indicative of tournament play.
The first thing to notice is that the Prolog reasoners, FLUX-

PLAYER and CADIAPLAYER, are by far the most efficient.
FLUXPLAYER’s MM-search is the fastest in all games but
one (Othello-2007), where CADIAPLAYER is a clear winner.
For the MC-search the two players continue to be in a class
of their own, but now perform more comparably: FLUX-
PLAYER being fastest in seven out of the twelve games but
CADIAPLAYER in the remaining five. This shift in the agents’
performance between MM and MC search can be explained
by CADIAPLAYER’s state updates being on average some-
what slower than that of FLUXPLAYER’s. The effect of this
is less profound in the MC search, because there is only a
single state update per legal moves generation. The unlike
approaches the two agents use for representing game states
(as explained in subsections 3.1–3.2) apparently have their
strengths and weaknesses. FLUXPLAYER’s method seems to
work better on average; however, as seen from the Chinese
checkers multi-player results, the method used in CADIA-
PLAYER gains ground with increased number of players.

The second thing of interest is the huge relative perfor-
mance swing in individual games, for example, the MC
search of FLUXPLAYER is almost three times as fast as
CADIAPLAYER’s in Skirmish, but close to ten times slower
in Othello. The main explanation for this is again the unlike
approaches the agents use for representing game states.

Finally, it is evident that the remaining GDL reasoners are
non-competitive to FLUXPLAYER and CADIAPLAYER. This
is not too surprising for JAVAPROVER, C++REASONER, and
GGPBASEPROVER, which are relatively immature reasoners
in comparison to state-of-the-art Prolog interpreters. How-
ever, the poor performance of JAVAECLIPSE is somewhat
surprising as it uses the same Prolog engine as FLUXPLAY-
ER although through a different interface. Apparently, the
inter-process communication application-programming inter-
face used to communicate with ECLiPSe Prolog from a non-
Prolog host programming language imposes excess overhead.
It should be noted, that this overhead is to some extend op-
eration system specific and may be influenced by settings of
the loopback network adapter. However, we did not test this.

4.4 Robustness
To check the robustness of the reasoners we compared the
node counts reported for the fixed-depth minimax searches.

As is to be excepted, the most established systems seem
most robust. All three Prolog-based systems, FLUXPLAY-
ER, CADIAPLAYER and JAVAECLIPSE, played without er-
rors. However, CADIAPLAYER reports higher node counts
for Chinese checkers and Othello because it does not remove
duplicates from the legal moves.

JAVAPROVER turned out to be the most stable one of the
custom-made GDL interpreters. It always crashed on Othello
before completing the game, but produced the correct node
counts without errors on all the other games.

GGPBASEPROVER also consistently crashed on Othello
as well as occasionally on Amazons, but produced correct re-
sults for all the other games.

C++REASONER never crashed, but had occasional errors
on all games except for Amazons and Tictactoe.
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Figure 3: Running speed in nodes per second relative to the fastest reasoner for each of the games.

5 Conclusions and Future Work
Several conclusions can be drawn from this work. We list the
main ones and discuss some implications they may have:

• The GDL reasoners are at least two to three orders of
magnitude slower than their game-specific counterparts.
Although one cannot expect generalized approaches to
be quite as efficient as game-specific ones, this huge dif-
ference is nonetheless somewhat worrisome. For exam-
ple, the slow state-space reasoning does exclude poten-
tially interesting search and learning techniques from be-
ing effectively applied in GGP — this is particularly no-
ticeable when using statistically based approaches, be-
cause there are simply not enough samples generated
for getting meaningful statistics. Furthermore, in GGP
it is important to validate ones research ideas on a wide
range of games (and play hundreds of matches for each
game to get statistical significance). The slow reasoning
typically requires longer thinking times to be used per
move than would otherwise be possible. This again can
lead to excessively long turnarounds times for validating
promising research ideas.

• Of the GDL reasoners tested, FLUXPLAYER and
CADIAPLAYER are by far the most efficient, both using
Prolog engines as their backends.
FLUXPLAYER is overall the fastest GDL reasoner, how-
ever, it has the drawback that the given level of perfor-
mance is only realized when the host program is writ-
ten in Prolog. The ECLiPSe Prolog engine it uses as a
backend does not provide an efficient API for a different
host programming language. CADIAPLAYER is compa-
rable in performance to FLUXPLAYER for MC search.
Furthermore, the YAP Prolog backend used by CADIA-
PLAYER allows for a convenient and efficient API access
for C/C++ programs.

• The relative performance of the GDL reasoners can be
quite game dependent.
This is particularly visible with FLUXPLAYER and
CADIAPLAYER. Neither of the two reasoner dominates
the other, and their relative performance is highly depen-
dent on the game at hand, ranging from one being three
times slower to ten times faster. This suggests that there
may still be substantial scope for improvements for GDL
reasoner by detecting properties that affect their perfor-
mance adversely and use appropriate representations.
• The tested non-Prolog based reasoners are non-

competitive efficiency wise.
As mentioned before, this is somewhat understandable
as they are relatively immature in contrast to state-of-
the-art Prolog systems. However, they still have at
least two advantages over the Prolog-based reasoners: 1)
They are easier to integrate into GGP projects written in
the same host programming language (i.e., Java or C++)
and may thus in some cases be a better choice; 2) They
can be be used by GGP programs using thread-based
parallelization, which is problematic for the Prolog-
based GDL reasoners as the underlying Prolog systems
are non-reentrant (parallelization in GGP agents such as
FLUXPLAYER and CADIAPLAYER is thus on the pro-
cess level).
• Robustness is a problem with some of the less mature

publicly available GDL reasoners.
As for future work a more comprehensive performance

comparison of existing GDL reasoners would be valuable. A
similar study focusing on GDL-II [Thielscher, 2010] reason-
ers would also be of interest. The results also suggests that
it might be a good idea to combine the relative strengths of
the FLUXPLAYER and CADIAPLAYER reasoners, for exam-
ple, by altering the state updates in CADIAPLAYER to more
in line with that of FLUXPLAYER. Also, a concentrated effort
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into building a well-documented state-of-the-art non-Prolog
based GDL reasoner for use by the GGP community at large
would be quite useful. Such an undertaking would have po-
tentials for combining the best of both worlds: a robust and
efficient GDL reasoner that is both easily integrated into GGP
projects written in a popular imperative programming lan-
guage and that permits thread-based parallelism.
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Abstract

We present an adaptive method that enables a
General Game Player using Monte-Carlo Tree
Search to adapt its use of RAVE to the game
it plays. This adaptation is done with a com-
parison of the UCT and RAVE prediction for
moves, that are based on previous playout re-
sults. We show that it leads to results that are
equivalent to those obtained with a hand tuned
choice of RAVE usage and better than a fit-
for-all fixed choice on simple ad hoc synthetic
games. This is well adapted to the domain of
General Game Playing where the player cannot
be tuned for the characteristics of the game it
will play before the beginning of a match.

1 Introduction

It this introduction, we present the General Game Play-
ing (GGP) and the Monte-Carlo Tree Search with UCT
and RAVE used by the General Game player we use for
this study.

1.1 General Game Playing

Since its definition by the Logic Group of the Stanford
University in 2005 [Genesereth et al., 2005], GGP has
given rise to research in the field of computer playing
programs that are able to play a large class of different
games without modification. It is an important step to
create a unified framework able to cover the common
aspects of game playing.
In GGP, games are described with the General De-

scription Language (GDL); it allows the description of
any finite deterministic game with complete information
[Genesereth, 2006]. GDL is based on first order logic
with negation as failure; most notably it does not include
arithmetic that has to be defined as needed in the game
description. It is supplemented with a few keywords (see
table 1). Based on the Knowledge Interchange Format
(KIF), GDL has a syntax reminiscent of Lisp and is se-
mantically very similar to Datalog.
An extension of GDL, named GDL2, allows the

description of games with incomplete information
[Thielscher, 2010]. It adds only a keyword (sees p x) to

(role p) p is a player
(legal p m) move m is legal for player p
(does p m) player p played the move m
terminal the match is finished
(goal p n) player p got n points (0 ≤ p ≤ 100)
(init x) x is true in the initial position
(true x) x is true in the current position
(next x) x will be true after the current move

Table 1: GDL keywords used to describe a game in the
context of first order logic.

describe the percepts of each player. The player name
random is also reserved for a source of non-determinism.
These extensions to GDL have been proved to be suffi-
cient to make it universal [Thielscher, 2011].
Every year since 2005, there is an international GGP

competition hosted by the AAAI or IJCAI conferences
where different teams pit their players against each other
on new games designed by the organizers.

1.2 Monte-Carlo Tree Search

Since 2008, most of the players participating in the GGP
competition use some kind of Monte-Carlo Tree Search
(MCTS). The base of MCTS is to combine a stochastic
sampling of the search space and the buildup of a tree
of game positions linked by possible moves.
An exploration is made of four phases: selection of a

tree leaf, tree growth, playout to the end of the game
and update of the tree nodes.
The selection of a tree leaf is done with a descent in

the tree. During this descent, previous sampling results
are used to select the parts of the tree where exploration
is promising. When this descent reaches a node with
unplayed moves, a move is selected and a new leaf is
built and added to the tree, and a playout is performed:
successive moves are selected according to a given policy
and played until a terminal situation is reached. The
result, as described by the game rules, is used to update
the nodes and/or edges forming the path built during
the descent in the tree.
After the pioneer work of Brugmann [Brügmann,

1993], MCTS methods have been used with great suc-
cess in the game of Go where they allow programs to
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reach the level of the best human players on small boards
[Coulom, 2007]. They are now applied to many fields of
Artificial Intelligence with many variants [Browne et al.,
2012]. An attractive characteristic of MCTS is that it
does not rely on a heuristic evaluation of a game situa-
tion. In GGP there is no general method known to build
a reliable heuristic.

Upper Confidence bound applied to Trees

During the descent phase, one has to make a com-
promise between exploration: the selection of less vis-
ited branches and exploitation: accumulating visits in
parts of the tree where previous samplings gave good
results. This dilemma is frequently solved using Upper
Confidence bound applied to Trees (UCT) [Kocsis and
Szepesvári, 2006].
With UCT, the move selected during the descent in

the tree is one that maximizes

µi + C ×
√
log(t)/si

where µi is the mean result of the playouts starting with
the move, t is the total number of playouts played in
the current node and si is the number of playouts start-
ing with this move. The constant C, named the UCT
constant is used to adjust the level of exploration of the
algorithm: high values favor exploration and low values
favor exploitation.

Rapid Action Value Estimates

When using bare UCT, the first move selections in a
given node of the tree have to be made according to a
statically encoded heuristic (not possible in GGP) or at
random, as long as there is not enough playout results
to guide the selection. To alleviate this inconvenience,
most Go playing programs use some variant of All Moves
As First (AMAF): the back-propagation of the playout
results takes into account the move played and the sub-
sequent moves.
The currently most common variant of AMAF is Rapid

Action Value Estimates (RAVE): a node contains a table
associating legal moves with the results of all the play-
outs where these moves were selected during the playout.
This table is used to obtain a RAVE estimation that is
combined with the UCT estimation in a way that de-
pends on the number of playouts starting with this move:
the move choice is principally based on the RAVE esti-
mation when there are few playouts; the importance of
the UCT estimation grows with the number of playouts
starting with this move [Gelly and Silver, 2007].

2 Implementation of RAVE in our

General Game Player

We detail here the precise implementation of RAVE in
our General Game Player that we used for the experi-
ments.
Each edge in the built part of the game tree contains

the mean result of the explorations that went through
this edge. Each node contains a RAVE table associating
each legal move with the mean result of all the playouts

that went through this node where this move was played
later on.
In the back-propagation phase, a RAVE estimation is

updated in each node with the mean playout results for
each legal move that was selected during the playout.
In the tree selection part, a move score is computed

as follows:

• if there was a playout starting with this move, its
score is the mean of the results of the playouts
that started with this move; if no playout has been
played starting with this move, it receives a default
mean score that we fixed to the maximum possible
result after informal tests. This ensures that un-
explored moves are preferred over sub-optimal ex-
plored moves.

• when the move has been used at the beginning of a
playout, the mean score is replaced by a UCT score
u using the upper confidence bound computed with
the usual UCT formula. This ensures that a move
giving always good results in a few playouts will
receive a better score than a never explored move.
As the number of experiments on this move grows,
the upper confidence bound on its mean value will
decrease and other moves will be explored. This
property is particularly desirable in GGP where the
number of playouts can remain small with the usual
time settings, due to GDL interpretation time.

• if the move has been used later in some playouts,
a RAVE score r is computed as the mean of these
playout results; a RAVE influence factor α is com-
puted as α =

√
k/3t+ k and the move final score is

(1 − α)u + αr; k is the RAVE equivalence constant
balancing the weight of UCT and RAVE. RAVE
will influence the selection more when there are few
playouts while UCT will have the greatest influence
when the number of playouts grows.

Finally, the move is selected pseudo-randomly between
those having the maximum score.

3 Online adjustments of RAVE usage

Finsson et al. show in the context of General Game Play-
ing that RAVE can bring an advantage on some games
(Checkers, Othello) while it can be detrimental for some
others (Skirmish) [Finnsson and Björnsson, 2010].
What we are interested in is whether it is possible to

dynamically adapt RAVE usage to the characteristics of
the game. The player has no knowledge of the character-
istics of the game and the static analysis of its properties
based on its description is difficult.
We first study the degradation of the results obtained

when only some choices of edges in the playouts, selected
at random, are made using RAVE: this way there are
always some choices the RAVE usage of which is optimal
for the characteristics of the game at hand. We show
in the experiments section that as the usage of RAVE
augments, the results are modified in a nearly linear way.
So mixing randomly playouts using RAVE and playouts
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not using it does not give good results, since what is
gained on games where RAVE is beneficial is lost on
games where it is detrimental.
One would like to use online learning on the informa-

tion gathered in the first playouts to deduce some prop-
erties of the game and use Rave only when it is profitable.
When the tree is built and playout results are used in the
back-propagation phase to update moves characteristics
in the nodes, data is accumulated on RAVE and UCT
estimations. This data can be used to adjust RAVE us-
age: increasing RAVE usage when RAVE estimation is
better or nearly identical to UCT estimation gives over-
all results that show only a slight degradation to those
obtained when RAVE usage is specifically adapted to the
game at hand.

4 Games designed for RAVE

In this section, we present three games specifically de-
signed to present characteristics where RAVE gives a
significant advantage or disadvantage. They are tweaked
versions of Sum Of Switches games (SOS).
There are at least two kinds of situations where RAVE

is known to hinder the results of explorations. First when
a move is good if played as first move but bad if played
later; as the move played later leads to bad results, its
exploration as a first move is not encouraged by RAVE; it
occurs usually in Go in the context of semeai or tsumego
problems where the first move is crucial and has to be
played first to be of some value.
RAVE is detrimental in a second kind of situations:

when moves are good when played later on but bad if
played as first moves, RAVE evaluation is so good that
it favors their exploration. It leads to bad choices of the
part of the game tree to explore. When the number of
explorations is used for the selection of the move to play
it actually can lead to the choice of a bad move. This
typically occurs in Go with ko threats: a ko threat is a
good move when played at the right time but is silly if
played before the beginning of the ko fight or when the
ko can be taken back.
We use synthetic games to specifically embody these

situations: Blind Cashing Checks that was also stud-
ied in [Tom and Müller, 2010] under the generic name
Sum Of Switches and another tweaked version Cashing
Stale-dated Checks with characteristics of the first kind
that makes RAVE detrimental. We also present another
tweaked version of Cashing Checks that we call Cashing
Post Dated Checks that belongs to the second kind that
is not used in this study.

4.1 Sums of switches: Cashing Checks

Berlekamp and al. present the family of games named
Cashing Checks [Berlekamp et al., 1982, p. 120]. The
material is a set of bearer checks for certain amounts; a
player move consists in taking one of the checks for his
own. At the end of the game, the sum of each player
checks are summed up and the winner is the player that
holds the largest amount.

This game is a Sum Of Switches (SOS); in the context
of Combinatorial Game Theory it is a sum of sub-games
the values of which are either +n or −n depending on
the player who takes the check; these are switches, noted
±n.
The best strategy is naturally to take the check for the

largest amount that remains on the board. In a game
starting with k checks with amounts ni, the first player
will score

∑
1<2i<k

n2i and the second
∑

0<2i+1<k
n2i+1

when ni ≥ ni+1.

4.2 Blind Cashing Checks

The game becomes more interesting when the players
are innumerate, i.e. are not able to read or compare
numbers: they have to select the checks without knowl-
edge of the amount that is written on it. At the end of
the game, an arbiter sums the amounts gained by each
player and announces the winner. This final result is
the only clue the players get on the value of the checks.
We call this game Blind Cashing Checks. This game
was already used to study properties of RAVE [Tom and
Müller, 2010].
RAVE works well for a MCTS player at Blind Cashing

Checks: the player who takes the checks with the largest
amounts wins this playout, without consideration of the
turn where she took the check, so RAVE will promote
the choice of these checks in the first turns, leading to
the winning strategy.
The difficulty of the game can be adjusted by varying

either k the number of turns or N the number of checks
as long as N > k. As Tom et al., we use checks referring
to the first N non-zero positive integers and compensate
the first player advantage by setting a komi of k/2. If
both players play optimally the sums of the amounts
written on checks held by both players (plus komi for
the second player) are equal and the game is declared a
draw.

4.3 Cashing Stale-Dated Checks

We tweak the game of Cashing Checks to have a game
where RAVE will be detrimental: on each check we add
a limit of validity under the form of a turn of the match;
if a player takes a check before this turn, she cashes the
amount written on the check; if she takes it after this
turn, the date is stale and it gives no point at all.
The date of each check is the turn where it is taken

when both players play the optimal strategy at Blind
Cashing Checks. The check with the biggest value
amounts to nothing after the first move, the second one
after the second turn and so on. This modification of the
game allows to modelize the situations where RAVE is
a disadvantage because a move is good if played as first
move but bad if played later.
The limit of validity of the checks introduces another

winning strategy: a winning move for a player is either
to take the valid check with the largest amount or to take
the check with the next amount, as the check with the
largest amount will give nothing after this move. This
way, the first player can force the second player to take
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a check that amounts to nothing at the last turn if the
number of checks and the number of turns are equal. To
avoid this issue we use at least one more check than there
are turns in a match (i.e. N > k).

4.4 Cashing Post Dated Checks

Another variation is Cashing Post Dated Checks. In this
game, each check is dated with a turn; it amounts to
nothing if taken before this turn and for the sum written
on it if taken on this turn or any subsequent turn.
We set the date for each check according to this

amount: a check for a sum of N − k + i is valid only
on turn i and subsequent turns. The optimal strategy
for both players is then to take the checks in the reverse
order, starting with the one that has the least amount
and finishing with the one with the biggest amount. A
reverse komi compensates the advantage of the second
player.
This allows to modelize the situation when a move is

good if played at the right time but bad if played sooner.
We did not use this game in the experiments as this does
not seem to be a crucial issue in the current common
General Game Playing settings.

5 Experimental settings

For the experiments we have used a GDL description
of Blind Cashing Check using twenty checks and ten
turns with a komi of five points. For Cashing Stale-
dated Checks the number of turns was also set to ten
but the number of checks was limited to twelve to give
comparable results.
Both players were instances of our General Game

Player Ary [Méhat and Cazenave, 2010] in its usual set-
ting: UCT with an exploration constant of 0.4 (actually
40 since the reward of a player can vary between 0 and
100) and transposition tables.
For the experiments, two players with the same pa-

rameters played together 500 complete matches and the
percentage of draws with optimal moves by both players
(optimal draw) was counted; a larger percentage indi-
cates that the players played well, so the value of the
parameter is well suited to the task at hand.
To fix the number of playouts used by the players to

select a move, we studied the results obtained when this
number varies. The results are presented in figure 1: the
results are better as the number of playouts grows but
not linearly. Later on, we set the number of playouts to
2000 for the experiments, where the number of optimal
draws was over 50% in order to leave some space for
improvements when RAVE is used.
With the previous settings, the value of the RAVE

equivalence constant was made to vary for the games
Blind Cashing Checks and Cashing Stale-dated Checks
(see figure 2). As the value of the equivalence constant
becomes greater, the level of play gets better at Blind
Cashing Checks and gets worse at Cashing Stale-dated
Checks. Here also the influence on the results is more
obvious for the small values of the constant.
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Figure 1: The percentage of matches with optimal draws
at Blind Cashing Checks as a function of the number of
playouts per move.
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Figure 2: The percentage of matches with optimal moves
of both players at Blind Cashing Checks and Cashing
Stale-dated Checks as a function of the RAVE equiva-
lence constant.
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Figure 3: The percentage of draw games with optimal
play of both players at Cashing with Stale-dated Checks
and their mean as a function of the RAVE usage.

Given these results, we choose to set the RAVE equiv-
alence constant to 700 for the following experiments, as
this value appears in the floor where small modifications
of the constant do not modify significantly the results.

6 Using RAVE only for some choices

We first explore what happens when a player uses RAVE
for some choices during the descent and does not use it
for other choices. With the RAVE equivalence constant
set to 700, we vary the percentage of children selections
in the descent phase of UCT where RAVE is used.
As it descends in the built tree, a (pseudo-)random

number is used to decide if the next edge will be chosen
using only UCT or if RAVE is to be used as described in
section 2. The results give a measure of the importance
of using RAVE or not using it systematically on every
choice.
The results are summarized in figure 3: as expected,

the level of play, reflected by the number of draws, di-
minishes for Blind Cashing Checks as RAVE is used more
often, while it gets better for Cashing Stale-dated Checks.

7 Comparing observed results and

RAVE predictions

As the tree is built, the results of the playouts are ac-
cumulated in edges and nodes to be used as a basis for
the predictions of UCT and RAVE. We propose to com-
pare observed results with the RAVE predictions to get
an evaluation of when to use RAVE. This evaluation will
not be precise, but as shown by the previous experiment,
one can expect to get a result that is better than a fit
for all setting and that is proportional to the precision
of the evaluation.
As a measure of the precision, we sum at the root node

the number of playouts for the moves where RAVE gave
an estimation that was higher than the observed mean
result and the number of moves where it is lower, with
an error margin. When the number of playouts starting
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Figure 4: The percentage of optimal draws at Blind
Cashing Checks and Cashing Stale-dated Checks as a
function of the margin used to consider RAVE move pre-
diction to be too optimistic.

with moves where RAVE was optimistic is greater than
the number of playouts starting with moves where it is
pessimistic, RAVE is used for the choices of children of
the next descent in the built tree.
The results are presented in figure 4. With a nega-

tive margin the level of play at Blind Cashing Checks
diminishes slightly while it gets much better for Cashing
Stale-dated Checks as the margin tends to zero. With a
positive margin, the level of play at Cashing Stale-dated
Checks stays about the same when the margin augments,
while it decreases at Blind Cashing Checks.
When the margin is set to 0, the percentage of optimal

draws is 91.40 % at Blind Cashing Checks and 47.20 %
at Cashing Stale-dated Checks. This figures are to be
compared with those obtained with the best setting for
a game: 93.39 % at Blind Cashing Checks when always
using RAVE and 49.10 % at Cashing Stale-dated Checks
when never using RAVE: the player adapts successfully
its use of RAVE to the game at hand.

8 Conclusion and perspectives

We have shown that it is possible to use the comparison
of the mean results observed during playouts with the
results predicted by RAVE to adapt the use of RAVE to
the characteristics of the game. This way, one gets an
overall result that is equivalent to what can be obtained
with a usage of RAVE tuned before the match beginning.
The results presented here were obtained on synthetic

games designed specifically to emphasize characteristics
that make RAVE beneficial or detrimental. The obser-
vations have to be extended to the third synthetic game,
to real games whose characteristics regarding RAVE are
less bold and in realistic playing situations where the
number of playouts can be much smaller due to the slow-
ness of GDL interpretation.
There are many other ways to measure the correlation

between observed playout results and RAVE predictions
that have to be explored. We intend to investigate if this

GIGA'13 Proceedings 67



correlation can be used to adapt the value of the RAVE
equivalence constant.
The method used here would not work in another syn-

thetic game built by summing the two games used, for
example alternating a move in Blind Cashing Checks and
a move in Cashing Stale-dated Checks because the com-
parison between observed results and RAVE prediction
was always calculated on the root node. It would be
possible to observe this correlation at every node when
it stores enough playout results.
More generally, the method presented here uses infor-

mation that is already present in the tree built by the
MCTS to determine characteristics of the game it plays.
It could also be interesting outside of GGP for games
where characteristics regarding RAVE vary depending
on the position.
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Annex: Blind Cashing Checks GDL

Description

(nstep 10) ; ten steps
(maxvalue 20) ; twenty checks
(komi 5) ; komi is 5 points

;; two players
(role left)
(role right)

;; legal moves
(<= (legal ?p ?v)

(true (control ?p))
(value ?v)
(not (true (played ?v ?s))))

(<= (legal ?p noop)
(true (notcontrol ?p)))

;; alternate play
(init (control left))
(init (notcontrol right))
(<= (next (control ?p)) (true (notcontrol ?p)))
(<= (next (notcontrol ?p)) (true (control ?p)))

;; turns
(init (step 0))
(<= (next (step ?n+1))

(true (step ?n))
(+ 1 ?n ?n+1))

(<= terminal (nstep ?nstep) (true (step ?nstep)))

;; maintain sum for each player
(init (sum left 0))
(init (sum right 0))

(<= (next (sum ?p ?n+m)) ; play valid check
(role ?p)
(true (sum ?p ?n))
(does ?p ?m)
(+ ?m ?n ?n+m))

(<= (next (sum ?p ?n))
(role ?p)
(true (sum ?p ?n))
(does ?p noop))

;; do not take the same check twice (with transpo)
(<= (next (played ?v ?s)) (true (played ?v ?s)))
(<= (next (played ?v somestep)) (does ?p ?v))

;; goal
(<= l>r

(true (sum left ?l))
(true (sum right ?r))
(komi ?k)
(+ ?k ?r ?r+k)
(gt ?l ?r+k))

(<= r>l
(true (sum left ?l))
(true (sum right ?r))
(komi ?k)
(+ ?k ?r ?r+k)
(gt ?r+k ?l))

(<= (goal left 100) l>r)
(<= (goal left 0) r>l)

(<= (goal right 0) l>r)
(<= (goal right 100) r>l)

(<= (goal ?p 50)
(role ?p)
(not l>r)
(not r>l))

; values of the checks
(<= (value ?n)

(gt ?n 0)
(maxvalue ?max)
(not (gt ?n ?max)))

;; arithmetic: addition, comparison
(<= (+ 0 ?x ?x))
(<= (+ ?a ?b ?a+b)

(++ ?a-1 ?a)
(++ ?b ?b+1)
(+ ?a-1 ?b+1 ?a+b))

(<= (gt ?a ?b) (++ ?b ?a))
(<= (gt ?a ?b) (++ ?a-1 ?a) (gt ?a-1 ?b))

;; integers
(++ 0 1) (++ 1 2) ...
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Abstract
General Game Playing Agents often play far
more poorly than their game-specific counter-
parts due to the overhead of repeatedly query-
ing an evolving logic program. A natural al-
ternative approach is to instead maintain a
grounded logic program and update it as the
game state changes. This paper presents a
simple algorithm for updating a stratified logic
program to reflect changes to the game state
and shows for Connect-4 that using logic pro-
gram updates as opposed to recomputing from
scratch at each visited game-state constitutes
a big-O improvement in the running time of
checking for 4-in-a-row.

1 Introduction
GDL (Game Description Language1) is a minimalistic
declarative language for describing games. Many games
have large and complex descriptions in GDL. For this
reason, General Game Playing Agents often play far
more poorly than their game-specific counterparts due
to the overhead of constantly querying an evolving logic
program. Although GDL requires that game descrip-
tions be stratified, and there exist linear-time algorithms
for querying stratified logic programs, the games are
often complex enough to make even linear algorithms
prohibitively slow. One natural alternative approach is
to instead maintain a grounded logic program and up-
date the program as the game state changes. This pa-
per presents a simple algorithm for updating a stratified
logic program to reflect changes to the game state and
shows for Connect-4 that using logic program updates
as opposed to recomputing from scratch at each visited
game-state constitutes a big-O improvement in the run-
ning time of checking for 4-in-a-row.
Section 2 provides some definitions are provided for

talking about a grounded logic program. It is assumed
that the provided program is already grounded. The ap-
proach described in this paper only applies to grounded
programs so a game whose grounding is too large to fit

1As defined in [Love et al., 2008]

in memory cannot be played using the techniques de-
scribed in this paper. Section 3 defines the concept of
a numeric model of a logic program which is crucial to
understanding the algorithm outlined in this paper. Sec-
tion 4 provides the pseudocode for an approach to up-
dating a stratified logic program and proves its correct-
ness and running time. Section 5 shows, as an example,
why this technique is expected to exhibit such impres-
sive results for Connect 4. Section 6 describes some op-
timizations that were used to speed up performance in
an actual implementation of this technique. Section 7
shows some experimental results for a couple common
games (including Connect 4).

2 Some Definitions
Stratified Program
In [Apt et al., 1988], a stratified logic program is defined
as:

A program is stratified if there is a partition
P = P1∪̇ . . . ∪̇Pn

such that the following two conditions hold
for i = 1, . . . , n:
1. If a relation symbol occurs positively [as a

positive literal] within a clause Pi, then its
definition is contained within

⋃
j≤i

Pj

2. If a relation symbol occurs negatively [as
a negative literal] within a clause Pi, then
its definition is contained within

⋃
j<i

Pj

P1 can be empty
We say that P is stratified by P1∪̇ . . . ∪̇Pn

and each Pi is called a stratum of P
Given a rule
r = [h⇐= {a1 . . . am} ,¬{b1 . . . bn}]
we can say h = h (r) to mean h is the head of rule r.
b+ (r) = {a1 . . . am}
and
b− (r) = {b1 . . . bn}
denote the sets of atoms contained in the body of r

as positive and negative literals respectively and their
union is:
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b (r) = b+ (r)
⋃
b− (r)

If h = h (r), and b+ (r) ⊂ M and b− (r)
⋂
M = ∅,

then by r we know that h must be true and we can say
r supports h in M , written
M (r) ` h

Dependency Graph
[Apt et al., 1988] also defines the “dependency graph” of
a logic program P as:

The directed graph representing the relation
refers to between the relation symbols of P .
Formally, p refers to q in P iff there is a clause
C in P where p is the relation symbol in the
head of C and q is the relation symbol of a
literal in the body of C.

Because this paper is only interested in grounded pro-
grams, we will use dependency graph to mean the de-
pendency graph between the atoms of a program as if
each atom is its own relation symbol of arity 0.

Atom Types
In a GDL program, the atoms can be divided into two
classes. First, there are the true and does atoms here-
after referred to as “base” atoms. These do not appear
in the head of any rule and are instead determined by
the game state and players’ moves respectively. All the
remaining atoms are “view” atoms. These atoms’ values
are determined by a stratified logic program which de-
scribes the game. This program must be solved in order
to ascertain a player’s legal moves, to tell whether the
game is in a terminal position, to compute child posi-
tions, and to determine the winner of the game.

Game State
A game state S is a subset of the base atoms in a game
G which are taken to be “true” in this game state.
For the purposes of this paper, a game state includes

assignments to does atoms as well as true.

Game State Program
Given a game description G as a set of rules and a game
state S, we define the game state program PG (S) as
G ∪ S (ie each atom a ∈ S is a fact in PG (S)).

Canonical Stratification
In Lemma 1 of [Apt et al., 1988], they show by construc-
tion that a program is stratified if the dependency graph
for that program contains no negative edges as part of a
cycle.
This is done by taking the strongly connected compo-

nents P1 . . . Pn of the dependency graph of P and order-
ing them topologically. They then go on to show that
this partitioning P1∪̇ . . . ∪̇Pn constitutes a stratification
of P .
For a given game G, let G1 . . . Gn be the stratification

of G obtained in this way. We will refer to this as the
canonical stratification of G. Furthermore, given a
game-state program PG (S) for any game-state S, it is
easy to see that P1 = S and P2 . . . Pn+1 = G1 . . . Gn

constitutes a stratification of PG (S) which we can call
the canonical stratification of PG (S).
Because P2 . . . Pn+1 is always the same regardless of

the game state, we can assign to each rule r ∈ G a level
l (r) = k|r ∈ Pk

In other words, the level of r is the stratum in which
r occurs in the canonical stratification of PG (S) for any
state S.
In addition to giving each rule a level, it will also be

useful to assign a level to each atom.
The level of any view atom a is the maximum level

over all rules which have a as their head:
l (a) = max

a=h(r)
l (r)

The level of any base atom is just 1
l (b) = 1

Supported Model
A supported modelM of a game state program PG (S)
is a set of atoms M such that S ⊂M and for each view
atom h ∈ G, there is a rule r that supports h in M . (ie
∃rM (r) ` h)

Stable Model
A stable model orminimal model of S is a supported
model M that is minimal in the sense that no subset of
M is a supported model of S.
As [Apt et al., 1988] show, the unique minimal model

MP of a program P stratified by P = P1∪̇ . . . ∪̇Pn is
MP = Mn

where
M1 = TP1

↑ ω (∅)
and
∀k, Mk = TPk

↑ ω (Mk−1).
Here TP is the immediate consequence operator mean-

ing for some set of facts M ,
TP (M) = {h|∃r ∈ P : M (r) ` h}
and TP ↑ ω is defined by
• TP ↑ 0 (M) = M

• TP ↑ (n + 1) (M) = TP (TP ↑ n (M)) ∪ TP ↑ n (M)

• TP ↑ ω (M) =
∞⋃

n=0

TP ↑ n (M)

Since P is finite and we’re only interested in grounded
programs, TP ↑ ω (M) can be obtained by repeatedly
adding all consequences of P ∪M to M until M con-
verges.

3 An Ordering on Rules and Atoms
3.1 Finding Levels
We start by finding the level (as defined in the above
section) of each rule and each atom.
Since the level of any rule or atom does not depend on

the game state, this can be done in preprocessing. We
simply build the dependency graph of G and then topo-
logically sort the rules. Then we identify the strongly
connect components and index them according to the
order of first appearance in the topologically sorted list.
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f unc t i on a s s i gnLev e l s ( r u l e s )
r u l e s = topoSort ( r u l e s )
SCCs = ident i fySCCs ( r u l e s )
i=0
f o r r u l e in r u l e s {

i f r u l e . s c c . l e v e l==None {
ru l e . s c c . l e v e l = i
i = i + 1

}
ru l e . l e v e l = ru l e . s c c . l e v e l

}
endfunct ion

3.2 Numeric Model
Of a Positive Program
Given a positive program P with stable solution MP =
TP ↑ ω (∅), we define a numeric model of P as follows.
For each atom a

v (a) =

{
min {n ≥ 1|a ∈ TP ↑ n (∅)} a ∈MP

0 a /∈MP

In other words, the value of any atom which is true in
MP is the number of iterations of applying TP (starting
from the empty set) it takes to discover a ∈MP

For each rule r with head h = h (r), we define the value

of r to be v (r) =

{
max {v (a) |a ∈ b (r)} MP (r) ` h

0 MP (r) 0 h
In other words, the value of any rule which is “acti-

vated” in MP is the max value over all the atoms in its
body while the value of any “deactivated” rule is 0.
An assignment of integer values to each atom and each

rule in P constitue a numeric model of P . Intuitively,
a numeric model tells how many steps it takes to prove
that an atom a belongs in the minimal model MP .

Of a Stratified Program
A numeric model of a stratified program P assigns values
to each rule and each atom according to the numeric
model of each of the semi-positive strata P1 . . . Pn of P .
An atom a is said to belong to Pk if its level l (a) = k.
In other words, for an atom a with l (a) = k and a

minimal model M̄k−1 of P̄k−1 = P1 ∪ . . . ∪ Pk−1, the
value of a is

v (a) =

{
min

{
n ≥ 1|a ∈ TPk

↑ n
(
M̄k−1

)}
a ∈MP

0 a /∈MP
.

This definition of the value of an atom a within some
stratum Pk of a stratified program is almost identical to
the definition for a positive program, except that instead
of starting from the empty set, we start from the minimal
model M̄k−1 of all the strata P1 ∪ . . .∪Pk−1 prior to Pk.

Theorem 1
For any activated rule r with head h = h (r), l (r) < l (h)
implies v (h) = 1.
Proof
Since l (r) < k, we know that b+ (r) ⊆ M̄k−1
Since r is activated, b− (r) ∩ MP = ∅ and so by

Mk−1 ⊂MP , this shows that b− (r) ∩Mk−1 = ∅

So from this we can see that a ∈ TPk
(Mk−1) ⊆ TPk

↑
1 (Mk−1)
�
The value of a rule r with head h = h (r) is defined

almost exactly as for a positive program, except that
we’re only concerned with body atoms with the same
level as r.

v (r) =

{
max {v (a) |a ∈ b+ (r) ∧ l (a) = l (r)} MP (r) ` h

0 MP (r) 0 h

(where max (∅) = 1)

Theorem 2

Let vk (r) =

{
v (r) k = l (r)

0 k 6= l (r)
In a stratified program P with minimal model MP ,

the value of any atom a ∈MP is
v (a) = 1 + min

{
vl(a) (r) |M (r) ` a

}
In other words v (a) is one more than the minimum

value over all potential supporting rules with the same
level as a or just 1 if there is a supporting rule from a
lower level.
Proof:
As was shown in Theorem 1, if an atom a has a true

supporting rule r such that l (r) < l (a), then v (a) = 1.
Let us therefore assume the only supporting rules have

the same level as a, ie l (r) = l (a)∀M (r) ` a.
Let M = M̄k−1. For an atom a with l (a) = k, if

v (a) = n, then we know that a ∈ TPk
↑ n (M) and

furthermore by the minimality of v we know that a /∈
TPk
↑ (n− 1)

(
M̄k−1

)
.

Since TPk
↑ n (M) = TPk

(TPk
↑ (n− 1) (M)) ∪

TPk
↑ (n− 1) (M) it must be the case that a ∈

TPk
(TPk

↑ (n− 1) (M))
This means there exists a rule r ∈ Pk for which TPk

↑
(n− 1) (M) (r) ` a, but there does not exist a rule r′ for
which TPk

↑ (n− 2) (M) (r′) ` a. Then it follows that r
has level n − 1 and there is no rule supporting a whose
level is < n − 1. Then n − 1 = min {v (r) |M (r) ` a}.
Since we assumed l (a) = l (r)∀M (r) ` a, we can there-
fore say v (a) = n = 1 + min

{
vl(a) (r) |M (r) ` a

}
�

3.3 An Ordering on Rules and Atoms
Between levels and values, we now have a partial order-
ing on all the rules and atoms in a stratified program.
Let us say that the atoms and rules in a program are

ordered lexicographically first by level and then by value:
a � b iff l (a) < l (b) or l (a) = l (b) ∧ v (a) ≤ v (b)
If we sort all the atoms and rules according to this

ordering (where atoms come before rules of the same
level and value), this gives a possible order in which a
stable model of P can be constructed.

4 The Algorithm
The algorithm I propose below maintains and updates a
numeric model as changes are propogated up from the
base atoms. This guarantees that the maintained model
is always stable.
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Note that although the pairs inserted into the priority
queue have both a rule and a value, the value is only
used for ordering the priority queue. When the rule is
polled from the queue, it’s value is recomputed and may
not be the same as the value that was inserted into the
queue.

f unc t i on propogate ( changedBaseAtoms ) {
f o r atom in changedBaseAtoms

f o r r u l e in atom . inBody
pqueue . add ( ( r u l e=ru le , newVal=0))

whi l e pqueue . hasNext ( )
propogateRule ( pqueue . p o l l ( ) )

}

func t i on compare (p1 , p2 ) {
//p1 and p2 are ( ru le , newVal ) pa i r s
i f p1 . r u l e . l e v e l != p2 . r u l e . l e v e l

r e turn compareNum(p1 . r u l e . l e v e l ,
p2 . r u l e . l e v e l )

e l s e
re turn compareNum(p1 . newVal ,

p2 . newVal )
}

pqueue = pr i o r i t yqueue (
comparefunct ion = compare )

func t i on propogateAtom (atom) {
newval = 0
f o r r u l e in atom . headof {

i f r u l e . va lue > 0 {
i f r u l e . l e v e l == atom . l e v e l

nv = ru l e . va lue + 1
e l s e

nv = 1
i f newval == 0 or nv < newval

newval = nv
}

}
i f ( atom . value > 0

and newval > atom . value ) {
f o r support in atom . headof {

i f support . va lue > 0 {
pqueue . add ( support , support . va lue )
support . va lue = 0

}
}
newval = 0

}
i f newval != atom . value {

atom . value = newval
nbval = min ( newval , 1)
f o r r u l e in atom . inPosBody {

i f r u l e . l e v e l == atom . l e v e l
pqueue . add ( ( r u l e = ru le ,

newval = newval ) )
e l s e

pqueue . add ( ( r u l e = ru le ,

newval = nbval ) )
}
f o r r u l e in atom . inNegBody

pqueue . add ( ( r u l e = ru le ,
newval = 1 − nbval ) )

}
}

func t i on propogateRule ( r u l e ) {
newval = 1
f o r atom in ru l e . posBody {

i f atom . value == 0 {
newval = 0

} e l s e i f ( atom . value > newval
and newval > 0
and atom . l e v e l == ru l e . l e v e l ) {

newval = atom . value
}

}
f o r atom in ru l e . negBody {

i f atom . value > 0
newval = 0

}
i f newval != ru l e . va lue {

ru l e . va lue = newval
propogateAtom ( ru l e . head )

}
}

Theorem 3
If the propogate method terminates, the resulting values
form a stable numeric model:
Proof
This can be seen as the result of a couple observations:
• Every time any value changes, the result is pro-

pogated to all the atoms which might possibly be
affected by that change.
• Every time the propogateRule method is called,

when the method returns, the rule has the correct
value locally (ie assuming each of the supporting
atoms have the correct value).
• With one exception (to be addressed), every time

the propogateAtom method returns, the atom has
the correct value locally (ie assuming each of the
supporting rules have the correct value).

The one exceptional case occurs when a currently non-
zero atom would increase in value. Instead the atom
and all the rules supporting the increase all have their
values set to zero and the rules are thrown back into
the queue. Because the rules are thrown back onto the
queue, we know that they will all necessarily have their
values recomputed.
The atom will also be recomputed unless all support-

ing rules have new value zero in which case it’s already
correct.
This means that for every atom which might poten-

tially change value, propogateAtom is called, and the
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last time propogateAtom is called on any atom, it will
have the correct value.
�
Although the above proof shows that the algorithm

can terminate only with the correct value, it makes no
guarantees as to the running time or even that the al-
gorithm will ever terminate. To prove this we need the
following theorem.

Theorem 4
Calling propogate cannot cause any atom to change
value more than twice.
Proof:
Inductively, this follows from the following three prop-

erties:

1. For any atom or rule q whose current value v (q) > 0
is already positive, after calling propogate, the new
value will be v′ (q) ≤ v (q).

2. When any atom or rule q changes value, the new
value it takes on is always either 0 or the actual
correct value v (q).

3. When propogating a (rule, newval) pair p1, for any
(rule, newval) pair p2 that gets added to the queue,
p1 � p2.

1. is clearly true for atoms because the code includes a
conditional statement saying “If the value of this atom
would increase, instead set it and all its supporting rules
to zero and add them back to the queue”
To see that 1. holds for rules, note that if v =

max (a1 . . . an), then if some change to/removal of one
ak increases v, it must be that ak increases, but since
atom values do not directly increase, this cannot hap-
pen.
To see that 2. and 3. are true for some atom a, apply

the inductive hypothesis that 2. and 3. hold for all rules
r for whom r ≺ a.
Then it follows that any rule supporting M (r) ` a

must have its correct value already. And since we are
guaranteed by 3. to hit a in order by ≺, all supporting
rules for whom v (r) < v (a) must already have their
correct values. All other supporting rules will have value
0 or else be unchanged from their starting value if that
value is > v (a). In either case, the minimum of the
nonzero supporting rules will be v (a)− 1 so a will take
on its correct value v (a).
It only remains to show that the special case where a

would increase, but instead all its supporting rules are
set to 0 occurs only when the pair on the queue is of the
form (r, 0). This will prove that 3 always holds.
To see this, keep in mind that because of 1., no rule can

increase in value, so the way in which an atom increases
in value is that all its minimal supporting rules are set to
false and the atom falls back on a larger-valued support-
ing rule. When this happens, the propogated value is the
one coming from the minimal supporting rules which are
no longer true so that value must be 0.
�

5 Example: Connect 4 Win-Checking
Consider the game Connect 4. Any GGP agent must
query the board at every game state to determine
whether the state contains a winning 4-in-a-row con-
nection or not. Typically, such a connection would be
GDL-encoded to look something like:

( d i r N 1 0) ( d i r E 0 1)
( d i r NE 1 1) ( d i r SE −1 1)

(<= ( inarow 1 ? p laye r ?row ? co l ? d i r )
( t rue ( c e l l ?row ? co l ? p laye r ) )
( r o l e ? p laye r )
( d i r ? d i r ? dr ?dc ) )

(<= ( inarow ?n ? p laye r ?row ? co l ? d i r )
( t rue ( c e l l ?row ? co l ? p laye r ) )
( inarow ? n l a s t ? p laye r ? r1 ? c1 ? d i r )
( d i r ? d i r ? dr ?dc )
( eq ?row (sum ? r1 ?dr ) )
( eq ? c o l (sum ?c1 ?dc ) )
( l e s s o r e q ?n 4)
( eq ?n (sum ? n l a s t 1 ) ) )

(<= ( winner ? p laye r )
( inarow 4 ? p laye r ?row ? co l ? d i r ) )

Now consider how much work is involved in determin-
ing the truth of the grounded atom (winner x) where the
players are x and o.
For each row ?row, for each column ?col for each di-

rection ?dir, we must check the value of (inarow 1 x ?row
?col ?dir).
Now, for all cells where this atom is true, we must

check neighboring cells to determine the truth of (inarow
2 x ?row ?col ?dir).
For a connect-4 board whose size is WxH, the big-O

running time of this check is O (WH).
But if we use incremental propogation, after each move

is made, only one cell has changed value, so only that one
cell needs to be checked for a 4-in-a-row. This operation
is always constant time O (1) regardless of the board size.

6 Optimizations
In this section, we provide some optimizations that can
be used to speed up the performance of the algorithm:

6.1 Rule Level +1
2

Whenever l (r) < l (h (r)), add 1
2 to the level l (r). This

way, the algorithm doesn’t bother computing the value
of r until after all it’s body atoms have the correct value
so there’s no need to update r more than once.

6.2 Primary Supporting Rule Tracker
For each true atom with only supporting rules on the
same level, keep a pointer to one supporting rule whose
value is v (r) = v (a) − 1. Now whenever another rule
besides r changes value, if its new value is 0 or ≥ v (a)−
1, we know that the value v (a) will not change as a
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result, so we don’t need to recompute v (a). If r′ has a
new value which is < v (a) but still > 0, then we know
without having to look at all potential supporting rules
that a’s new value will be vnew (a) = v (r) + 1. This
is analogous to DPLL’s two watched literals approach to
Boolean Constraint Propogation as presented in section
2 of [Moskewicz et al., 2001]. The analogy is made almost
exact by considering the LP-implied expression
a→ [r1] ∨ . . . ∨ [rn]
where {r1 . . . rn} is the set of rules that have a as their

head and [r] indicates an implied atom with a single
supporting rule [r]← [b+ (r) ,¬b− (r)].
This expression can be rewritten in disjunctive normal

form as:
¬a ∨ [r1] ∨ . . . ∨ [rn]
Now our two watched literals are ¬a and rk where

rk is the chosen supporting rule. So long as rk does not
change value, we need not worry about a changing value.

6.3 Priority Queue Optimizations
In practice the bottleneck of this algorithm is priority
queue operations. For this reason, it is beneficial to use
an application-specific priority queue. The following two
optimizations speed up the program quite a bit:

No Duplicates
In addition to maintining a priority queue with all (rule,
newval) pairs. We also keep a hash set. Before adding a
pair to the queue, we look it up in the hash set to see if
it’s already been added. If so, we don’t bother.

Bucket Queue
The priority queue is maintained as a collection of buck-
ets (one for each level in the program). Each bucket itself
contains its own priority queue. In this way, the usual
O (log n) insertion time for a heap queue is reduced to
O (log k) where k is the number of pairs in the queue at
the level to be inserted.
It’s even useful to keep a special bucket at each level

for pairs with value 0 or 1 and add only pairs with higher
values to the priority queue. In this way only the atoms
which are part of head cycles suffer from the penalty of
inserting elements into a heap. For tight games such as
Othello and Connect 4 (but not Hex), this removes the
need for a priority queue entirely.

6.4 Supporting Atom Count Tracker
To reduce the number of rules that must be added to
the priority queue, each rule r can keep a count cr of
the number of body literals which are satisfied. This
count is updated not when the rule’s propogate method
is called, but rather immediately whenever any body
atom changes value. Since every atom must be satisfied
in order to activate the rule, we do not need to bother
adding the rule to our priority queue unless every literal
is satisfied after the change or was satisfied before the
change (this can be checked in constant time by seeing
whether cr = |b (r)|).
Furthermore, as with the “supporting rule tracker”, for

activated rules we can track the body atom whose value

Early Game Midgame End game
Tic Tac Toe 48.3× 103 -* -*

Connect 4 (7x6) 29.3× 103 33.7× 103 37.3× 103

Hex (7x7) 7.19× 103 9.48× 103 12.7× 103

Y (36 cells) 10.3× 103 13.1× 103 17.4× 103

Othello (8x8) 0.808× 103 1.13× 103 1.94× 103

Table 1: Average Playouts / 5 sec on some standard
games
* The agent solves the game too quickly to get significant
meaningful statistics

is maximal. If any other atom changes value (positive to
positive) then it cannot affect the value of this rule (since
positive changes can only decrease as was proved in The-
orem 4) so we only need to know when our supporting
atom changes value.

6.5 Lazy As-Needed Propogation
The different things we might wish to query about our
program are:
• What are my legal moves (legal ?player ?move)
• What is the next game state (next ?fact)
• Is the game over (terminal)
• What’s the score (goal ?player ?v)

Starting with these four possible queries, during prepro-
cessing we can backtrack over the dependency graph to
determine what use each atom might potentially have.
For instance, in Connect 4, the atom

( inarow 2 x 4 4 N)

is only of interest in determining the score of the game.
If we already know the game state is not terminal, then
we may not need to query this information.
For this reason, we can maintain four separate priority

queues (one for each of the different potential queries).
Then when each rule is propogated, it is only added to
the priority queues corresponding to that rule’s uses.
When we query for one of these four things, we first

propogate the rules only on the corresponding priority
queue and ignore the other queues. The overhead of
inserting each change into up to four queues as opposed
to one appears to be not as serious as of propogating
values that are of no immediate interest.

7 Results
Table 1 lists the performance of a simple Java MCTS
player. For Tic Tac Toe and Connect 4, the performance
is significantly (in the early game almost an order of
magnitude) faster than in [Waugh, 2009].

8 Future Work
Although this paper dealt exclusively with atoms and
with grounded programs, the concept of levels and strata
extend naturally to predicate logic. There may be merit
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in finding ways to construct the true atoms and find
their values on the fly and assign levels based on the
corresponding predicate to each atom. This could be
particularly useful for programs where a predicate has
a large arity, but only a small subset of the grounded
instances of that predicate are ever true simultaneously.
It would be interesting to optimize this approach us-
ing generated C++ code as in [Waugh, 2009]. Addi-
tionally, it would be useful to have an upper bound on
the ratio # atom values changed in numeric model

# atom values changed in stable model . Of
course for tight programs, this is just 1, but many games,
such as Hex, Y, and Go, require loopy programs. In these
cases it would be interesting to know exactly how much
“extra” work is necessary to maintain that information.
Perhaps propogation would run in faster amortized time
if we loosen the restriction on values which atoms and
rules can take on to say v (a) is greater than the value of
some supporting rule and v (r) is greater than or equal
to the value of all same-level supporting atoms.

9 Conclusion
By recognizing which aspects of the game change with
respect to each move, we can eliminate much of the re-
peated work done for querying game states. Incorporat-
ing techniques from logic program updates is a promis-
ing path for closing the performance gap between gen-
eral game playing agents and their game-specific coun-
terparts.
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