
Kernel Design for Isolation and Assurance of Physical
Memory

Dhammika Elkaduwe Philip Derrin Kevin Elphinstone
NICTA∗ and University of New South Wales

Sydney, Australia

ABSTRACT
Embedded systems are evolving into increasingly complex soft-
ware systems. One approach to managing this software complexity
is to divide the system into smaller, tractable components and pro-
vide strong isolation guarantees between them. This paper focuses
on one aspect of the system’s behaviour that is critical to any such
guarantee: management of physical memory resources.

We present the design of a kernel that has formally demonstrated
the ability to make strong isolation guarantees of physical memory.
We also present the macro-level performance characteristics of a
kernel implementing the proposed design.

Keywords
isolation, seL4, memory management, embedded systems, micro-
kernels

1. INTRODUCTION
Embedded systems are evolving into increasingly complex soft-

ware systems. Drivers of this trend include the desire to consoli-
date functionality previously spread across several platforms onto
a single platform, and supporting ever-increasing feature sets. We
have moved from single-vendor closed system, to systems incorpo-
rating software, sourced from third parties, that possesses varying
degrees of assurance. High-end embedded systems now host lea-
gacy operating systems, such as Linux, to further extended the fea-
ture set, together with user-installed, untrusted applications. While
functional correctness is becoming increasingly difficult and ex-
pensive to achieve, it is becoming more important, as safety-critical
or mission-critical systems are targetted for consolidation.

One approach to improving the robustness of embedded systems
is to divide the system into components and provide strong iso-
lation guarantees between them — the failure of a component is
isolated from the rest of the system. There are many approaches to

∗NICTA is funded by the Australian Government’s Department of
Communications, Information Technology, and the Arts and the
Australian Research Council through Backing Australia’s Ability
and the ICT Research Centre of Excellence programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IIES’08 April 1, 2008, Glasgow, UK
Copyright c© 2008 ACM 978-1-60558-126-2 ...$5.00.

providing isolation guarantees, such as the classical processes and
virtual memory [8], separation kernels [24], isolation kernels [30],
virtual machines [29] and microkernels [16], all of which provide
varying levels of isolation guarantees at different granularities. The
level of isolation that can be achieved depends, to a large degree,
on the mechanisms provided by the underlying kernel — be it a
microkernel, a virtual machine monitor, or an isolation kernel.

This paper focuses on one aspect of providing strong isolation
guarantees — the management of physical memory on the device.
Specifically, the mechanisms used to directly and indirectly control
access to physical memory, while providing services to software
components on the system.

The problem is more complex than simply controlling the size
of virtual memory, or resident set size of an application. Services
such as pages or threads not only require allocation of memory to
directly support the service (a frame or thread-control block), ser-
vice provision also results in the allocation of kernel metadata to
implement the service (such as page tables) or provide the book-
keeping required to reclaim the storage on release. Ideally, any ker-
nel mechanism provided to manage physical memory and enforce
an particular isolation policy must encompass both physical mem-
ory consumed directly by the application, and any physical mem-
ory consumed indirectly by the kernel metadata needed to provide
services to applications.

We can summarise our approach to this problem as: (a) eliminat-
ing the need for all implicit allocation of metadata from kernel, and
(b) the promotion of all kernel metadata (including the provision for
book keeping) into first-class, explictly-allocated objects. This ap-
proach reduces the problem of enforcing a physical memory isola-
tion policy over the components, to that of enforcing isolation over
the authority to explicit kernel object creation and object-authority
distribution between components, which is achieved by a capability
based, decidable access control model.

Kernel services and their implementation complexity have a di-
rect consequence on the ability to successfully apply our approach.
Thus our overall system design is that of a microkernel-based sys-
tem, where the microkernel aims to provide a minimal, efficient,
flexible kernel with strong guarantees on the sufficiency and the im-
plementation correctness of the mechanisms required for achieving
true isolation. Moreover, in order to realise the proposed model, the
system must be equipped with a hardware MMU. Thus the target
of our work is mid- to high-end devices of the embedded systems
spectrum.

In the remainder of the paper, we discuss the requirements and
issues surrounding the management of physical memory in the con-
text of enforcing isolation boundaries, that consequently motivated
our approach (Section 2). In Section 3, we introduce the memory
management model and a summary of its performance is given in

Section 4. Finally, Section 5 discusses related work, and conclu-
sions and future work are in Section 6.

2. REQUIREMENTS
Memory allocation to support kernel services and associated

metadata can have a direct or indirect effect on the spatial and tem-
poral isolation between components, and the efficiency and assur-
ance of the overall system. In the following sections we examine
these issues and requirements of memory allocation mechanisms in
each of these areas.

2.1 Spatial Isolation
Physical memory is a limited and exhaustible resource. Any lim-

ited resource requires precise managment to avoid one task’s re-
quests for authorised services from directly or indirectly denying
services to another task.

Simple per-task quota-based schemes or static preallocation
would suffice in a statically structured system. However, any dy-
namic variation in system structure or resource requirements leads
to under-utilisation, due to the overly conservative commitment of
resources required to ensure all authorised service requests are sat-
isfied during peak demand. Significantly higher efficiency can be
achieved if memory can be safely reassigned to where it can be
utilised [29]. Memory allocation mechanisms must support dy-
namic allocation and safe re-assignment of memory in a controlled
manner.

2.2 Temporal Isolation
Temporal isolation is an important issue in the context of real-

time embedded systems. By temporal isolation we mean the pre-
dictability of execution times of a task, irrespective of other system
activities. The main issue that arises with memory allocation in
this context is the predictability of execution of kernel operations.
Memory allocation affects predictability when the kernel’s physical
memory is treated as a cache to avoid kernel memory starvation.
Several operating systems use the kernel’s physical memory as a
cache of data structures stored at user-level or on disk [3, 25], and
thus can always evict cache content to service new requests. While,
such a strategy avoids physical-memory based denial-of-service at-
tacks, it can not guarantee the temporal isolation — authorised re-
quest from one task might evict an entry from another and thereby
cause unexpected system call delays for the latter task. The kernel’s
physical memory management scheme must be capable of provid-
ing predictable access times to data structures associated with those
tasks that require temporal predictability.

CPU cache colouring techniques for improving predictable
cache behaviour are also dependent on control of the memory allo-
cation of the data structures requiring colouring [17], including the
kernel’s internal data structures.

The structure of bookkeeping in a kernel managing allocation
also affects predictability of interrupt or event latencies. Traversal
of lists or trees can result in varying or unreasonably long executing
times for kernel operations traversing the list. Ideally, all system
calls would complete in constant time, or at least be preemptable to
minimise interrupt latency.

2.3 No Single Policy
Modern embedded devices are multipurpose appliances; they are

composed of applications with diverse resource requirements. At
one extreme, the system must support applications with stringent
temporal requirements. For kernel memory allocation, this implies
a guaranteed allocation of physical memory (including metadata) to
those applications, that cannot be interfered with by any activities

of the rest of the system. In the other extreme, system is expected
to support best-effort applications where physical memory man-
agement is dynamic, on-demand and uncritical. These application
specific requirements must be considered in making memory man-
agement decisions, so that we can maximise the use of the limited
memory resource.

A realistic example of the latter extreme is in efficiently support-
ing a para-virtualised legacy operating system [1] on the micro-
kernel. Ideally, we want to isolate the critical components of the
system from the legacy OS (and its applications), while facilitat-
ing the legacy OS to make its own memory management decisions
— the legacy OS is in the best position to determine the alloca-
tion of page tables, pages, frames, and thread control blocks for its
clients. This scenario is just a specialised case of the more general
argument that application self-management of resources can lead
to more efficient use of those resources [6, 10].

2.4 Assurance
The ability to reason about the behaviour of components is cen-

tral to any system attempting to make strong isolation guarantees;
one must be capable of deciding whether or not isolation truly holds
for a given system configuration and in particular assure that it can-
not be violated in any future state. We believe that such assurance
can only be provided within a formal framework — a formal model
that captures the operational semantics of the kernel together with
a mathematical proof of its ability to enforce isolation. In our con-
text, this means (a) the model employed to control the allocation of
physical memory must be amenable to formal modelling, and (b)
the formal model must be decidable.

Moreover, to make such an analysis truly trustworthy, we need
to verify the kernel implementation against the formal model used
for the analysis. Verification here means a formal refinement proof
from the model down to kernel code. Our desire (and efforts [5])
to formally verify the embedded kernel introduces another require-
ment to our design. A verified kernel, implies a relatively static
kernel, in the sense of its design. This is motivated by the desire to
avoid invalidating any successful verification proofs of the kernel.
Ideally, the kernel code, including the memory management model
should be fixed. Changing the lowest-level of behaviour; such as
that of the heap, requires a significant redo of the proofs. However,
given the diversity of embedded applications we expect no single
memory allocation policy to suffice. This leads to the conclusion
that a verified embedded kernel must minimise the allocation pol-
icy in the kernel, and maximise the control higher-level software
over manging physical memory within the kernel.

3. SEL4 MEMORY ALLOCATION MODEL
The seL4 project proposes a novel kernel memory management

model to meet the requirements identified in Section 2. The de-
sign of our model is inspired by early hardware-based capability
machines (such as CAP [22]), where capabilities control access to
physical memory; the KeyKOS and EROS systems [11, 25], with
their controls on dissemination of capabilities; and the L4 micro-
kernel [16], where the semantics of virtual memory objects are im-
plemented outside of the kernel.

We start with an overview of the model together with a rationale
of our design choices (see Section 3.1), which is followed by a
discussion of issues and solutions related to realising the model
(see Section 3.2).

3.1 Overview
In our model, all metadata are promoted into first-class kernel

objects, that are allocated upon explicit user requests. We explain

how users request allocation of these objects later. Each kernel ob-
ject implements a particular abstraction, and supports one or more
operations related to that abstraction. For instance, abstraction of
threads is provided by the TCB object, and thread-related system
calls are the operations supported by the TCB object.

Authority over objects are conferred via tamper-proof (parti-
tioned) capabilities [4]. Authorised users obtain kernel services by
invoking capabilities.

Other than these explicitly-allocated kernel objects, the kernel
allocates no metadata — there are no implicit allocations within
the kernel. We achieved this by carefully avoiding, where possible,
mechanisms that require in-kernel bookkeeping; and by including
the essential bookkeeping data in the explicitly allocated kernel ob-
jects themselves.

There are two aspects that are worth mentioning here. Firstly,
explicit allocation provides the required flexibility — it is the users
that instruct the kernel to allocate a particular object type. Sec-
ondly, the approach reduces the problem of memory allocation to
kernel-object allocation. Thus, for achieving isolation, we simply
require precise control of kernel-object allocation.

Capability-based systems and their formal properties are well
studied in literature [2, 20, 26, 27]. When coupled with a suit-
able authority transfer scheme; such as the take-grant [18], these
systems yield a decidable access control model. Decidable here
means that future access rights a task may obtain can be decided
by analysing the initial system state. Moreover, with the take-grant
model, enforcing some invariants on the initial distribution of ca-
pabilities guarantees isolation of authority.

While the primary concern of take-grant (and the like) is control-
ling access to user-level resources, its properties match to our re-
quirements for control of kernel-object allocation. seL4 leverages
this similarity by extending its take-grant-like capability protection
model to control the allocation of kernel objects.

In seL4, allocation of kernel objects is performed by the retype
method, implemented by a special object type called untyped mem-
ory (UM) — an abstraction of a power-of-two sized, size-aligned
region of physical memory. Possession of an UM capability pro-
vides sufficient authority to allocate kernel objects in the corre-
sponding region — by invoking a UM capability, a user-level ap-
plication can request that the kernel refines that region into other
kernel objects (including smaller UM objects).

As such, the set of UM capabilities possessed by an application
defines the precise amount of physical memory that can be directly
or indirectly consumed by the application. Moreover, the explicit
allocation scheme provides user-level applications the freedom to
make policy decisions on how to use the UM capabilities in its pos-
session. We introduce the mechanisms used to restrict the number
of UM capabilities an application possesses later in Section 3.2.3.

3.2 The seL4 Kernel
In this section, we provide a detailed description of our memory

management approach as applied to the seL4 kernel.

3.2.1 Memory Allocation
At boot time, seL4 preallocates all the memory required for the

kernel itself, including the code, data, and stack sections (seL4 is a
single kernel-stack operating system). The remainder of the mem-
ory is given to the first task in the form of capabilities to untyped
memory (UM), and some additional capabilities to kernel objects
that were required to bootstrap the task.

A capability to UM can be used to create new kernel objects that
are smaller power-of-two sized, size-aligned objects via the retype
method, which returns a capability to the new object. These capa-

bilities to the new objects are called children, and the original UM
capability the parent. Retype enforces the following invariants:

1. the child objects must be wholely contained within the orig-
inal parent UM, and

2. the child objects must be distinct and non-overlapping.

The child objects may be UM (which may themselves eventually
become parents of their children), or they may be kernel objects of
other types that implement kernel services. The details of the other
types depend on the services provided by the kernel, and can be
ignored for the purposes of our discussion.

The user-level application (manager) that creates an object via
retype receives full authority over the object. It can then delegate
all or part of the authority it possesses over the object to one or
more of its clients. This is done by granting each client a capability
to the kernel object, thereby allowing the client to obtain kernel
services by invoking the object.

All the physical memory required to implement the object is pre-
allocated within the object at the time of its creation, and does not
exceed the size of the UM it was refined from. This eliminates
the need for the kernel to dynamically allocate memory to satisfy
requests from user-level tasks.

For obvious security reasons, kernel data must be protected from
user access. The seL4 kernel prevents such access by using two
mechanisms. First, the above allocation policy guarantees that
typed objects never overlap. Second, the kernel ensures that each
physical frame mapped by the MMU at a user-accessible address
corresponds to a typed frame object; frame objects contain no ker-
nel data, so direct user access to kernel data is not possible.

3.2.2 Re-using Memory
The model described thus far is sufficient for allocating kernel

objects, distributing authority among clients, and obtaining various
kernel services provided by these objects. This alone is sufficient
for a simple static system configuration.

In order to re-use memory in a dynamic system, the kernel needs
to guarantee that there are no outstanding valid capabilities to the
objects implemented by that memory.

seL4 facilitates this by tracking capability derivations, via link-
ing derived capabilities through themselves to form a tree structure
called the capability derivation tree or CDT. As an illustrative ex-
ample, when a user creates new kernel objects using an untyped
capability, the newly created capabilities would be inserted into the
CDT as children of the untyped capability. Similarly, any copy
made from a capability would become a CDT child of the original.

To avoid dynamic allocation of storage for CDT nodes, the CDT
is implemented as a doubly-linked list stored within the capabili-
ties themselves. The list is equivalent to the post-order traversal of
the logical tree. In order to reconstruct the tree from the list, the
kernel uses a combination of tag bits and physical address compar-
isons to determine whether an adjacent pair of capabilities have a
parent-child relationship. The CDT adds two words to each capa-
bility, resulting in a capability size of four words; we view this as a
reasonably low cost for enabling memory reuse.

Possession of the original UM capability that was used to al-
locate kernel objects provides sufficient authority to delete those
objects. By calling a revoke operation on the original untyped ca-
pability, users can remove all its children — all the capabilities that
are pointing to objects in the memory region covered by the UM
object. This operation is a potentially long running operation, and
thus is preemptible.

Revoking the last capability to a kernel object is easily de-
tectable, and triggers the destroy operation on the now unreferenced

object. Destroy simply deactivates the object if it was active, and
breaks any in-kernel dependencies between it and other objects.
The ease of detection of child objects in the CDT avoids reference
counting, which is an issue for objects without space to store the
count (e.g. page tables) in a system without metadata.

Once the revoke operation on the untyped capability is complete,
the memory region can be re-used to allocate other kernel objects.
Before re-assigning memory, the kernel affirms there are no out-
standing capabilities. The CDT provides a simple mechanism to
establish this — the untyped capability should not have any chil-
dren.

3.2.3 Isolation
We have described that our approach creates a direct relationship

between the posession of authority (via capabilities) and direct and
indirect access to physical memory. We now show how we exploit
this relationship to guarantee isolation of physical memory via the
isolation of authority.

Enforcing isolation at the granularity of an “application” is
overly restrictive; in some case, we want to allow a set of appli-
cations to share physical memory, but isolate that set from the rest
of the system. A realistic example of this is when hosting a para-
virtualised operating system — we want to allow the sharing of
physical memory between the guest OS kernel and the set of client
applications that are directly supported by it, while isolating that
set from the rest of the system.

To facilitate discussion we define the term isolation domain — a
collection of applications whose direct and indirect physical mem-
ory access is isolated from the rest of the system. However, all
applications within an isolation domain can, if need be, share re-
sources. In more precise terms, within an isolation domain, capa-
bilities can propagate freely, but can not cross an isolation domain
boundary. Isolation domains must be mandatory; that means, a ca-
pability can not ever cross an isolation domain not because of the
unwillingness of the applications, but because it is not allowed by
the system configuration.

There are three important questions we need to answer:

• Are the seL4 mechanisms sufficient to create and enforce iso-
lation domains?

• What invariants are required on the distribution of authority
to achieve isolation?

• Are these invariants reasonable in practice?

To answer the first two questions, we formalised the seL4’s pro-
tection model in the automated theorem prover Isabelle/HOL [23].
Introducing this formalism and the formal treatment of the above
two questions is beyond the scope of this paper. Informally, seL4’s
protection model is a variant of the classical take-grant protection
model — the variation arises mainly from the introduction of UM
capabilities to control the create operation of take-grant. In ad-
dition, seL4 discriminates between information flow channels and
authority flow channels. This means we have two types of inter-
process communication (IPC) channels; channels that only allow
information to flow, and channels that allow both information and
authority flows. For clarity we call the latter grant IPC channels.

Based on our formalism, we formally proved that seL4’s mech-
anisms are sufficient to enforce isolation domains. Moreover, the
proof also identifies the invariants that should be enforced over the
initial system configuration so that isolation domains hold for any
future state.

From a practical point of view, the proof states that, if we en-
force the following restrictions on the initial system configuration,

then isolation domains are guaranteed to hold in future state derived
from it, by executing any sequence of system commands. The re-
strictions are as follows:

• An application can only be in one isolation domain.

• Writable page tables and writable CNodes (capability stor-
age) cannot be shared between applications in different iso-
lation domains.

• There should not be any grant IPC channel between any two
applications in different isolation domains.

• Any application in one isolation domain should not have the
authority to modify the authority of a thread (i.e. a capabil-
ity with a specific right to the TCB object implementing the
thread) in another isolation domain. Or simply, we should
not share capabilities to TCBs across isolation domains.

To demonstrate that these invariants are not overly restrictive in
practice, we have constructed an example system that runs a legacy
OS kernel in an isolation domain (see Section 4). We believe these
invariants are not overly restrictive in constructing almost all prac-
tical systems.

4. PERFORMANCE EVALUATION
We have implemented our kernel memory-management model in

an experimental kernel called seL4::Pistachio, based on L4-embed-
ded [21], which runs on ARM11-based CPUs.

To examine the performance characteristics of the proposed
memory management scheme, we ported Wombat [15] — a para-
virtualised Linux 2.6 kernel that runs on the L4/Iguana operat-
ing system, to seL4::Pistachio system. Hereafter, we use the
term seL4::Wombat to refer to the Linux version running on
seL4::Pistachio and L4::Wombat refers to the Linux kernel on top
of L4/Iguana. We evaluate the performance characteristics of the
model by running the lmbench [19] suite on both the systems. Ben-
efits of virtualization in the context of embedded systems can be
found elsewhere [12], here we are using seL4::Wombat as an illus-
trative example of a complex software system.

All results were obtained on a KZM-ARM11 evaluation board,
which comprises an ARM1136-based (Freescale i.MX31) proces-
sor running at 532MHz with an L2 cache of 128KB and with
128MB of RAM.

Before investigating the results, we describe the architecture,
configuration, and the level of isolation of each system. Both
L4::Wombat and seL4::Wombat are microkernel-based systems.
The underlying microkernel in the former case is based on L4-
embedded, which is based on L4 [16], and in the latter case it
is seL4::Pistachio. Iguana is a small, capability-based operating
system that runs in user mode on top of L4 that provides and
enforces the underlying resource management policy in conjunc-
tion with L4. The authority to obtain kernel services that re-
quire the allocation of kernel metadata is centralised in Iguana —
any kernel service that may require the allocation of kernel meta-
data must be made through, and therefore monitored by Iguana.
Through this mechanism, Iguana enforces a strict control over
the physical memory consumption of L4::Wombat. In contrast,
seL4::Wombat is placed under similar controls by controlling the
dissemination of Untyped capabilities. Once seL4::Pistachio has
bootstrapped itself, it calls a resource manager which then boot-
straps seL4::Wombat. In the process of bootstrapping, the re-
source manager grants, among others, a set of UM capabilities to
seL4::Wombat and thereby allowing it to allocate/deallocate and

L4 seL4 % Gain
Latency [µs] [µs]
pagefault 34.4 18.7 45.4
fork 4570 3083 32.5
exec 5022 3440 31.5
shell 29729 19999 32.7
syscall 3.4 2.9 11.1
pipe 53.5 49.0 8.4
tcp 7.3 6.5 10.6
unix 116.5 109.4 6.0
ctx (4k 2) 10.7 9.31 7.6
Bandwidth [MB/s] [MB/s] %
pipe 61.1 61 -0.2
tcp 37.3 35.6 -4.5
unix 13.7 14.5 6.2
mem 364.8 367.1 0.6
mmap 696.4 696.5 0

Table 1: Lmbench performance of L4::Wombat vs.
seL4::Wombat

manage kernel objects directly — seL4::Wombat is at liberty to use
these UM capabilities as desired. For example, it can use them to
create address spaces, threads or frames and so on. However, by
enforcing the invariants we identified through the formal analysis,
the resource manager guarantees that seL4::Wombat cannot access
more UM capabilities.

Lmbench system latency and bandwidth results are shown in Ta-
ble 1. The first set of results in latency shows the latency of opera-
tions that require the allocation of physical memory. The second set
are the Linux system calls that can be handled without kernel meta-
data allocation, and the final set of numbers shows the bandwidth
for various lmbench tests.

The benchmarks that require allocation of physical mem-
ory show the performance benefits of our memory management
scheme. By decentralising resource management, seL4 eliminates
the need for Linux to proxy these requests through Iguana to the
microkernel in order to enforce an isolation policy over the Linux
sub-system. At the same time, Linux itself is free to share or iso-
late the resources it provides to its clients. Removing the need for
mediating microkernel system calls in order to enforce an isolation
policy has significant performance advantages.

The second group of latency benchmarks, and the bandwidth
benchmarks, do not require microkernel memory allocation (and
thus mediation) in the performance-critical component, and thus
do not show the presence and absence of mediate overheads in the
two systems repectively. The performance for these benchmarks
is mostly sensitive to the cost of exception IPC. When an applica-
tion traps into the microkernel with a system call number which the
kernel does not handle, the kernel generates and sends an exception
IPC to the Linux server for it to emulate a Linux system call for the
trapping application. For these results, seL4 exhibits much more
modest gains. However, these results are biased towards seL4 as
we have a hand-optimised assembly exception IPC path, versus L4
which relies on “C” for exception IPC on ARM11.

We are confident that a hand-optimised, assembly exception IPC
routine would deliver better the results for L4. But, our experience
in optimising the two microkernels suggests that such an optimisa-
tion will only be a slight improvement over the seL4 numbers — the
cost of delivering an IPC (as opposed to exception IPC), through a
hand-optimised, assembly routine in L4 is 199 machine cycles, and
seL4 is not far behind by taking 205 cycles. Validating this claim,

however is on going research.

5. RELATED WORK
The CAP computer system [22] is similar to our approach in

that capabilities to physical memory are required to create sys-
tem objects. The most notable differences between CAP and seL4
are that seL4 avoids external memory fragmentation and simpli-
fies bookkeeping by restricting object sizes to powers of 2 and it
is a software-based implementation on modern hardware, and has
capability management modelled after that of KeyKOS [11].

Eros [25], the Cache kernel [3] and the HiStar system [31] man-
aged their kernel data carefully. All three systems view kernel
physical memory as a cache of the kernel data. However, as dis-
cussed previously, such an approach is not suitable to systems with
temporal requirements.

The K42 kernel [13] takes advantage of C++ inheritance to con-
trol the behaviour of the underlying memory allocator. However,
K42’s focus is best-effort performance — it does not provide pre-
cise physical memory allocation guarantees, and variation of the
memory management policies, while easily achieved, would invali-
date any implementation proofs, if they where possible given K42’s
size and complexity.

Exokernel [7] is a policy-free kernel — its sole responsibility
is to securely multiplex the available hardware resources. Library
Operating Systems, working above the exokernel implement the
traditional operating system abstractions. We could find little con-
crete details of the underlying metadata management required to
bookkeep the current state of the multiplexed hardware resources
(e.g. the secure bindings), other than the caching approach to avoid
metadata exhaustion, which we have argued is insufficient.

Haeberlen and Elphinstone [9] implemented a scheme fro paging
kernel memory from user space. When the kernel runs out of mem-
ory for a thread, it will be reflected to the corresponding kpager.
The kpager can then map any page it possesses to the kernel, and
later preempt the mapping. However, the kpager is not aware of,
and cannot control, the type of data that will be placed in each page
and thus can not make an informed decision about which page to
revoke. In contrast, user-level resource managers in seL4 are aware
of the type of data placed in a page and therefore able to make
informed decisions about resource revocation.

The Fluke kernel provides mechanisms to export the kernel
state to user-level applications, which has been used to implement
check-pointing [28]. However, the kernel memory itself cannot be
controlled. In contrary, the main objective of seL4 is to provide
precise control over the kernel memory consumption, rather than
exporting the kernel state to user-level applications.

The L4.sec project at the Dresden University of Technology has
similar goals to our own. They divide kernel objects into first-class
(addressable via capabilities) and second-class objects (implicitly
allocated). Both classes require kernel memory objects to provide
the memory pool for creation of the objects [14]. Kernel memory
objects represent regions of memory used by the kernel for dynamic
allocation. System calls requiring memory within the kernel, pro-
vide a capability to a kernel memory object. The model however,
does not allow direct manipulation of second-class objects such as
page tables or capability tables (CNodes). As such, dynamically re-
allocating page table memory from an idle task to other tasks is not
possible without destroying the former task. Additionally, L4.sec is
denied much of the flexibility provided by seL4’s capability table
interface — it is not possible to share capability storage between
tasks.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a kernel design that is capable of
providing strong guarantees on the physical memory consumption
of an application. We achieve this by extending the access control
mechanism of the kernel to include all physical memory that an ap-
plication can directly or indirectly consume — including kernel’s
metadata. The kernel itself is mostly free of memory management
policy — it does not require the kernel to make any decisions about
how, where or when to allocate kernel memory. Instead, user-level
applications create, manage, recycle and destroy kernel objects via
the secure access control scheme. Thereby provide strong alloca-
tion guarantees and the flexibility required to manage the scarce
memory resource of an embedded device.

We have evaluated the design in two aspects; its formal prop-
erties and its performance. To evaluate the formal properties, we
developed a machine-checked, abstract specification of the kernel
model in Isabelle/HOL and formally proved that the design is suffi-
cient to achieve physical memory isolation. We have characterised
the performance of the design by using it as a platform for host-
ing a para-virtualised Linux kernel, which shows significant per-
formance gains for benchmarks that require allocation of physi-
cal memory. At present, we are working on improving the per-
formance numbers and making a more concrete comparison with
existing systems.

7. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In 19th SOSP, pages 164–177, Bolton
Landing, NY, USA, Oct 2003.

[2] A. C. Bromberger, A. P. Frantz, W. S. Frantz, A. C. Hardy,
N. Hardy, C. R. Landau, and J. S. Shapiro. The KeyKOS
nanokernel architecture. In USENIX WS Microkernels &
other Kernel Arch., pages 95–112, Seattle, WA, USA, Apr
1992.

[3] D. R. Cheriton and K. Duda. A caching model of operating
system functionality. In 1st OSDI, pages 14–17, Monterey,
CA, USA, Nov 1994.

[4] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. CACM, 9:143–155, 1966.

[5] P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T.
Chakravarty. Running the manual: An approach to
high-assurance microkernel development. In ACM SIGPLAN
Haskell WS, Portland, OR, USA, Sep 2006.

[6] D. R. Engler, S. K. Gupta, and M. F. Kaashoek. AVM:
Application-level virtual memory. In 5th HotOS, pages
72–77, May 1995.

[7] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level
resource management. In 15th SOSP, pages 251–266,
Copper Mountain, CO, USA, Dec 1995.

[8] J. Fotheringham. Dynamic storage allocation in the Atlas
computer, including an automatic use of a backign store.
CACM, 4:435–436, Oct 1961.

[9] A. Haeberlen and K. Elphinstone. User-level management of
kernel memory. In 8th Asia-Pacific Comp. Syst. Arch. Conf,
volume 2823 of LNCS, Aizu-Wakamatsu City, Japan, Sep
2003. Springer Verlag.

[10] S. M. Hand. Self-paging in the Nemesis operating system. In
3rd OSDI, pages 73–86, New Orleans, LA, USA, Feb 1999.
USENIX.

[11] N. Hardy. KeyKOS architecture. Operat. Syst. Rev.,
19(4):8–25, Oct 1985.

[12] G. Heiser. The role of virtualization in embedded systems. In
1st IIES, Glasgow, UK, Apr 2008. ACM SIGOPS.

[13] IBM K42 Team. Utilizing Linux Kernel Components in K42,
Aug 2002. Available from
http://www.research.ibm.com/K42/.

[14] B. Kauer. L4.sec implementation — kernel memory
management. Dipl. thesis, Dresden University of
Technology, May 2005.

[15] B. Leslie, C. van Schaik, and G. Heiser. Wombat: A portable
user-mode Linux for embedded systems. In 6th
Linux.Conf.Au, Canberra, Apr 2005.

[16] J. Liedtke. On µ-kernel construction. In 15th SOSP, pages
237–250, Copper Mountain, CO, USA, Dec 1995.

[17] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache
predictability for real-time systems. In Proceedings of the
Third IEEE Real-Time Technology and Applications
Symposium (RTAS ’97), pages 213–227, Montreal, Canada,
Jun 1997. IEEE.

[18] R. J. Lipton and L. Snyder. A linear time algorithm for
deciding subject security. J. ACM, 24(3):455–464, 1977.

[19] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. In 1996 Ann. USENIX, San Diego,
CA, USA, Jan 1996.

[20] N. H. Minsky. Selective and locally controlled transport of
privileges. ACM Trans. Program. Lang. Syst., 6(4):573–602,
1984.

[21] National ICT Australia. NICTA L4-embedded Kernel
Reference Manual Version N1, Oct 2005. http://ertos.nicta.
com.au/Software/systems/kenge/pistachio/refman.pdf.

[22] R. Needham and R. Walker. The Cambridge CAP computer
and its protection system. In 6th SOSP, pages 1–10. ACM,
Nov 1977.

[23] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[24] J. M. Rushby. Design and verification of secure systems. In
8th SOSP, pages 12–21, 1981.

[25] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast
capability system. In 17th SOSP, pages 170–185, Charleston,
SC, USA, Dec 1999.

[26] J. S. Shapiro and S. Weber. Verifying the EROS confinement
mechanism. In Symp. Security & Privacy, 2000.

[27] L. Snyder. Formal models of capability-based protection
systems. IEEE Trans. Comput., 30(3):172–181, 1981.

[28] P. Tullmann, J. Lepreau, B. Ford, and M. Hibler. User-level
checkpointing through exportable kernel state. In IWOOOS
’96: proc 5th International Workshop on Object Orientation
in Operating Systems, pages 85–88, Washington, DC, USA,
1996. IEEE Computer Society.

[29] C. A. Waldspurger. Memory resource management in
VMware ESX server. In 5th OSDI, Boston, MA, USA, 2002.

[30] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. In 5th OSDI,
Boston, MA, USA, Dec 2002.

[31] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In 7th OSDI,
pages 263–278, Berkeley, CA, USA, 2006. USENIX
Association.

http://www.research.ibm.com/K42/
http://ertos.nicta.com.au/Software/systems/kenge/pistachio/refman.pdf
http://ertos.nicta.com.au/Software/systems/kenge/pistachio/refman.pdf

	Introduction
	Requirements
	Spatial Isolation
	Temporal Isolation
	No Single Policy
	Assurance

	seL4 Memory Allocation Model
	Overview
	The seL4 Kernel
	Memory Allocation
	Re-using Memory
	Isolation

	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

